Fachbeitrag
Orbitalschweißen - © Gesellschaft für Wolfram Industrie mbH
29.06.2020

Die Königsdisziplin des WIG-Schweißens

Optimierung der Schweißergebnisse BEIM ORBITALSCHWEISSEN durch die korrekte Auswahl hochwertiger Wolframelektroden

Qualität zahlt sich aus: So würde etwa niemand einen Formel-1-Rennwagen mit preisgünstigen Allwetterreifen ausstatten. Um eine konkurrenzfähige Geschwindigkeit zu erreichen, sollte das Fahrzeug optimal auf der Bahn liegen und perfekt auf die jeweiligen Streckenbedingungen abgestimmt sein. Auch beim WIG-Lichtbogenschweißen muss das verwendete Werkzeug für hochwertige Schweißnähte an die jeweilige Anwendung angepasst werden – und dennoch verwenden viele Schweißer zweitklassige Wolfram-Elektroden, die nicht auf den jeweiligen Prozess abgestimmt sind. Diese Wahl führt zu einer Verschlechterung der Schweißergebnisse aufgrund von niedriger Elektrodenqualität. Allerdings erfordert effizientes Orbitalschweißen eine Wolfram-Elektrode mit individuell angepasster Spitzengeometrie und Oberflächenrauigkeit, passend zum richtigen Schutzgas. Ebenso müssen für optimale Schweißnähte weitere Faktoren beachtet werden, die Einfluss auf Zündeigenschaften, Lichtbogenstabilität, Gesamtwärmeeintrag haben sowie der Charakteristik der Schweißnaht entsprechen.

Die Anpassung aller Parameter an die jeweilige WIG-Anwendung ermöglicht eine bis zu sechsmal längere Standzeit und dadurch Ressourceneinsparungen von mehr als 350 Prozent im Vergleich zur Verwendung von unspezifischen No-Name-Elektroden. Dies gelingt allerdings nur mit dem entsprechenden Know-how, der korrekten Auswahl und der Verwendung von hochwertigem Wolfram. Drei zentrale Elemente lassen sich auf diese Weise optimieren: der Schweißprozess an sich, die chemischen Eigenschaften der verwendeten Wolfram-Legierung und das Schleifverfahren für die Elektrodenspitze.

Steigende Anforderungen an den Schweißprozess

Viele Hersteller und Verarbeiter von Metallrohren und -leitungen sehen sich im heutigen industriellen Umfeld strengeren Anforderungen an die Schweißnahteigenschaften gegenüber, als dies in der Vergangenheit der Fall war. Die Halbleiterindustrie benötigt beispielsweise schmalere Schweißnähte mit feinen Oberflächen auf der Innenseite von Edelstahl-Reinstgas-Leitungen. 

Diese Rohre transportieren hochreine Gase, die toxisch, entflammbar oder korrosiv sind, weshalb die im Schmelzschweißverfahren hergestellten Schweißnähte korrosionsbeständig und sauber verarbeitet sein müssen, um einen störungsfreien Durchfluss zu ermöglichen.

Außerdem reizen Konstrukteure aus allen technischen Disziplinen immer häufiger die Grenzen der technischen Machbarkeit aus, beispielsweise durch die Verringerung von Rohrwandstärken auf das notwendige Minimum. Der sauberen Verarbeitung der Schweißnähte kommt dadurch eine immer höhere Bedeutung im Hinblick auf Sicherheit und Standzeit der Produkte zu.

Während die Industrie sich stetig weiterentwickelt und ihre Prozesse anpasst, stellen auch Schweißer fest, dass ihr gesamtes Arbeitsumfeld hohem Konkurrenzdruck ausgesetzt ist. Anhand einer FMEA (Failure Mode and Effects Analysis) und einer Datenanalyse der Prozessgrößen wurden die bisher deutlich unterschätzten verdeckten Kosten bei der Verwendung von Orbitalsystemen identifiziert – beispielsweise die Produktion von Ausschuss, Verringerung der Anlagenverfügbarkeit und häufiges Auswechseln der Elektroden.

Dies treibt die Gesamtbetriebskosten in die Höhe, obwohl gleichzeitig möglichst viel Geld eingespart werden müsste. Dazu gehört die Vermeidung von vorzeitigem Verschleiß der Wolframelektrode und von Unregelmäßigkeiten im Bearbeitungsprozess, die durch den Einsatz verschiedener Wolframlegierungen bei der Verwendung von Elektroden unterschiedlicher Hersteller entstehen können.

Das Orbitalschweißen wird häufig im produzierenden Gewerbe eingesetzt: vom Verlegen der Kühl- und Heizrohre in Molkereien bis hin zum Verschweißen der Treibstoffleitungen für die Raumfahrt. - © Gesellschaft für Wolfram Industrie mbH
Das Orbitalschweißen wird häufig im produzierenden Gewerbe eingesetzt: vom Verlegen der Kühl- und Heizrohre in Molkereien bis hin zum Verschweißen der Treibstoffleitungen für die Raumfahrt. © Gesellschaft für Wolfram Industrie mbH
Die richtige Chemie durch sorgfältige Pulvermetallurgie

Ein anderes wichtiges Element für die Qualität einer Elektrode besteht in ihrer chemischen Zusammensetzung. Um die Elektrodenleistung zu verbessern, werden oftmals Dotierstoffe in Form von Cer-, Lanthan-, Zirkon-, Thorium-, Terbium- und Yttriumoxiden in Wolfram-Elektroden eingearbeitet. Solche Oxide senken die Elektronenaustrittsarbeit – gemessen in Elektronenvolt (eV).

Reines Wolfram hat beispielsweise einen Wert von 4,5 eV, während ein mit 2 Prozent Oxid hergestelltes Wolfram einen Wert von 2,8 eV aufweist. Indem der eV-Wert gesenkt oder das Ionisierungspotenzial gesteigert wird, verbessern die Oxide sowohl die Lichtbogenzündleistung als auch die Lichtbogenstabilität. Der Einfluss dieser Variable auf das Schweißresultat wird jedoch häufig unterschätzt und die meisten Firmen betrachten die Wolfram-Elektrode als statische Komponente.

Tatsächlich wird aber die Elektrode, sobald der Schweißstrom fließt, zu einem dynamischen Untersystem, dessen jeweilige Parameter die Eigenschaften des Lichtbogens maßgeblich beeinflussen. Insbesondere die Wärme des Schweißbogens führt dazu, dass die Oxide vom kühleren Kern der Elektrode zur heißeren Spitze wandern. Dort trennen sich die Oxide vom Basiselement als Dampf und hinterlassen einen Film auf der Elektrodenspitze. Geringe Toleranzen bei der Körnungsgröße, der Reinheit der Elemente und dem Zusammensetzungsverhältnis sind maßgeblich, um eine konsistente Oxidbewegung und Verdampfungsrate sicherzustellen, was wiederum zu einer gleichbleibend hohen Zündfähigkeit führt.

Da die Schmelzpunkte der Werkstoffe erheblich voneinander abweichen können – Wolfram schmilzt bei 3.422 Grad Celsius, Ceriumoxid bei 2.400 Grad Celsius – vertrauen die Hersteller der Elektroden auf das Verfahren der Pulvermetallurgie. Dabei werden spezifische, äußerst feine Wolfram-Korngrößen gemischt, um eine homogene Oxidverteilung in der Matrix zu fördern. - © Gesellschaft für Wolfram Industrie mbH
Da die Schmelzpunkte der Werkstoffe erheblich voneinander abweichen können – Wolfram schmilzt bei 3.422 Grad Celsius, Ceriumoxid bei 2.400 Grad Celsius – vertrauen die Hersteller der Elektroden auf das Verfahren der Pulvermetallurgie. Dabei werden spezifische, äußerst feine Wolfram-Korngrößen gemischt, um eine homogene Oxidverteilung in der Matrix zu fördern. © Gesellschaft für Wolfram Industrie mbH

Da die Schmelzpunkte der für die Elektroden verwendeten Werkstoffe erheblich voneinander abweichen können – Wolfram schmilzt bei 3.422 Grad Celsius, Ceroxid bei 2.400 Grad Celsius – vertrauen die Hersteller auf das Verfahren der Pulvermetallurgie. Dabei werden spezifische, äußerst feine Wolfram-Korngrößen gemischt, um eine homogene Oxidverteilung in der Matrix zu erzielen. Nach diesem Prozess werden das Wolfram und das Oxidpulver durch isostatischen Druck zusammengepresst, sodass eine einheitliche Dichte und Mikrostruktur entstehen.

In der Folge werden die spröden und nicht verfestigten Elektroden mehrere Stunden in einer hochreinen Wasserstoffumgebung und bei kontrollierten Temperaturen gesintert. Nach dem Sintern lassen sich die Elektroden zu ihrer endgültigen Form schmieden, wodurch die Körnungsstruktur weiter optimiert wird. Die Komplexität dieses Herstellungsprozesses der Wolfram-Elektroden birgt viele Möglichkeiten für Fehler und Prozessinstabilitäten, was auch die Unterschiede bei Leistung und Kosten der einzelnen Marken erklärt. Daher wird einerseits umfangreiches Know-how rund um die Elektrode benötigt, aber andererseits ebenso umfassende Kenntnisse über das Anwendungsgebiet selbst, um das Werkzeug optimal für den jeweiligen Prozess anpassen zu können.

Schleifen für eine glatte Oberfläche

Die Geometrie spielt ebenfalls eine entscheidende Rolle bei der Leistung einer Wolfram-Elektrode. Sie wird maßgeblich von der verwendeten Schleifmethode beeinflusst. Beispielsweise wird die Oberfläche durch Schleifmittel mit grober Körnung vergrößert, was wiederum für eine schnellere Oxidverdampfung sorgt. Des Weiteren variiert auch die Rauigkeit der Oberfläche bei der Bearbeitung mit einem grobkörnigen Schleifmittel von Anwendung zu Anwendung.

Wolframelektroden werden häufig bei Schweißarbeiten verwendet, aber deren Aufbau, Anschliff und Legierung besitzen beim WIG-Schweißen einen bisher unterschätzten Einfluss auf ein konstant gutes Produktergebnis. Nur bei einer ausgezeichneten Elektrodenqualität und -geometrie ist eine reproduzierbare Schweißnaht möglich. - © Gesellschaft für Wolfram Industrie mbH
Wolframelektroden werden häufig bei Schweißarbeiten verwendet, aber deren Aufbau, Anschliff und Legierung besitzen beim WIG-Schweißen einen bisher unterschätzten Einfluss auf ein konstant gutes Produktergebnis. Nur bei einer ausgezeichneten Elektrodenqualität und -geometrie ist eine reproduzierbare Schweißnaht möglich. © Gesellschaft für Wolfram Industrie mbH

Handbetriebene Schleifgeräte und Schleifmaschinen sollten der Vorbereitung der Elektroden für manuelle Anwendungen vorbehalten bleiben, nicht für mechanisierte Verfahren. Bei einem Orbital-WIG-Lichtbogenschweißsystem mit einer modernen Stromquelle mit Inverter und einem guten Lichtbogenzündverhalten sollten Unternehmen vorgeschliffene Wolframelektroden verwenden, die von robotergesteuerten CNC-Systemen bearbeitet wurden. Diese Maschinen sind in der Lage, die erwünschten sehr feinen Oberflächen zu erzeugen.

Um Einfluss auf Grenzschichten, Spannungsabfall, Kathodenflecken, Verdampfungsrate oder die relative freiliegende funktionale Oberfläche zu nehmen, können die Oberflächen Ra 0,01 µm (0,4 Mikrozoll) niedrig sein, bei hoher Kantenschärfe der Kontur oder 3,2 µm (125 Mikrozoll) mit perfekt gratfreien Flanken. Hochwertige, vorgeschliffene Elektroden aus Wolfram bieten zudem eine Maßgenauigkeit von ±0,05 mm am Spitzendurchmesser und Schleifwinkeltoleranzen von ±1 Grad.

Wird hingegen eine manuelle Schleifmaschine verwendet, um das Ende einer spitzen Elektrode abzuflachen, hinterlässt dies ausnahmslos einen mikroskopisch sichtbaren Grat. Wenn dieser Grat während des Schweißens abbricht, kann er in die Schweißnaht gelangen. Dies führt bei pharmazeutischen, medizinischen, nuklearen, Luft-/Raumfahrt-bezogenen und weiteren kritischen Anwendungen oftmals dazu, dass das Werkstück aussortiert werden muss. Zusätzlich beeinflusst die Geometrie des Elektrodenpunkts die Form des Plasma-Kegels, was wiederum Auswirkungen auf das Profil der Schweißraupe hat.

Ausblick auf aktuelle Forschungsergebnisse

Ein Großteil der bisherigen Plasmaforschung im Bereich der Elektrodengeometrie erfolgt mithilfe der Spot-on-Plate-Technik (Schweißpunkt auf Platte), bei der für zwei Sekunden bei 200 A ein Lichtbogen auf eine Platte trifft. Diese Technik stellt nicht die Flüssigkeitsdynamiken dar (Verhalten der Schweißnaht), die während des Orbitalschweißens auftreten. Sie berücksichtigt weder den Schweißkopf, der sich von der Schweißnaht aus in das kalte Material bewegt, noch bezieht sie die Wärmeleitfähigkeit und das Vorwärmen des Rohres während des Schweißvorgangs mit ein.

Neuere Forschungen, die unter tatsächlichen orbitalen Schweißbedingungen durchgeführt wurden, umfassten mehr als 500 Elektrodenkonfigurationen. Dabei wurden polierte Querschnitte der Schweißnähte mit einem Rasterelektronenmikroskop untersucht. Auf Grundlage dieser Ergebnisse können Anbieter von Elektroden- und Orbitalsystemen nun passende Wolframlösungen für spezifische Anwendungen empfehlen.

Schmale Schweißnähte mit einer Schweißnaht von 2 mm im Außendurchmesser profitieren beispielsweise vom steigenden und gleichbleibenden Lichtbogendruck von der Wolframelektrode, der durch eine Mischung aus Mischoxiden erzielt wird, bei denen verschiedene Oxid-Eigenschaften kombiniert werden.

Diese Forschungsergebnisse helfen zudem dabei, bisher verborgene Probleme zu lösen. So führten beispielsweise bei einem Unternehmen wiederkehrende Abweichungen im Schweißprozess zu einer deutlich erhöhten Ausschussquote. Um diese zu verringern, wurden umfangreiche Maßnahmen ergriffen, um die Ursache zu finden. Das Untersuchungsteam kalibrierte die Stromquelle sowie den Schweißkopf neu und inspizierte jeden Punkt im Stromkreislauf. Dies führte jedoch nicht zu einer Verbesserung der Schweißergebnisse. Das Team dachte dabei jedoch nie an die Verbrauchskomponente im Kreislauf: die Elektrode. Der Wechsel zu hochwertigeren, vorgeschliffenen Wolfram-Elektroden löste das Problem.

Beim Orbitalschweißen wird besonders auf eine hohe Qualität und Reproduzierbarkeit der Schweißnähte Wert gelegt, um die Arbeitssicherheit zu gewährleisten und mögliche Folgekosten durch fehlerhafte Prozesse zu vermeiden. - © Gesellschaft für Wolfram Industrie mbH
Beim Orbitalschweißen wird besonders auf eine hohe Qualität und Reproduzierbarkeit der Schweißnähte Wert gelegt, um die Arbeitssicherheit zu gewährleisten und mögliche Folgekosten durch fehlerhafte Prozesse zu vermeiden. © Gesellschaft für Wolfram Industrie mbH

In Abhängigkeit von den jeweiligen Einsatzbedingungen können kumulierte Abweichungen, die von diesen Faktoren hervorgerufen werden, leicht zu einer Gesamtwärmeeinbringung führen, die unter ansonsten identischen Umgebungsbedingungen um ganze 5 Prozent abweicht. Auch wenn das derzeit akzeptabel sein mag, kann sich dies in den nächsten zehn Jahren ändern, wenn Endnutzer von den Komponentenherstellern vollständigere Datensätze und Analysen fordern.

Fazit: Hochwertige Wolfram-Elektroden optimieren Kosteneffizienz

Bei jedem Orbitalschweißprozess senken hochwertige Elektroden die Gesamtschweißkosten. Testläufe unter Reinraumbedingungen bestätigen, dass sich mit optimierten Wolfram-Elektroden problemlos mehr als 650 Lichtbogenzündungen ohne Verzögerungen bei der Lichtbogenentwicklung realisieren lassen. Anstatt die Elektrode zu Beginn jeder Schicht wechseln zu müssen, könnten die Schweißer eine solche Elektrode mehrere Tage lang verwenden. Beispielsweise verzeichnete ein Unternehmen sogar 27 Stunden Lichtbogendauer mit einer einzigen Elektrode. Umgekehrt liefern unspezifische, zweitklassige Wolframelektroden durchschnittlich nur etwa 110 Lichtbogenzündungen und müssen somit deutlich häufiger gewechselt werden. Die damit verbundenen Arbeitskosten übersteigen allein schon sämtliche Einsparungen beim Kaufpreis. Unter Berücksichtigung von Ausschuss und Schweißdefekten ist es somit erstrebenswert, eine Elektrode sorgfältig auszuwählen. Denn nur so lassen sich qualitativ hochwertige Schweißnähte produzieren, die trotzdem kosteneffizient sind.

(Quelle: Wolfram Industrie GmbH; Autoren: Xavier Jauregui, Vizepräsident technischer Bereich Arc Machines Inc., und Matthias Schaffitz, Geschäftsführer Wolfram Industrie GmbH)

Schlagworte

OrbitalschweißenWIG SchweißenWolfram-InertgasschweißenWolframelektroden

Verwandte Artikel

19.04.2024

Mit neuen Schweißlösungen in Richtung Industrie 5.0

Viñolas Metall hat für die Serienfertigung eine CMT-Roboterschweißzelle in Kombination mit einer TPS-400i-Schweißstromquelle eingeführt. Gleichzeitig setzt man auf Multip...

Anlagenbau Blechbearbeitung Eisenbahnbau Kesselbau Kraftwerksbau MAG Schweißen Maschinenbau Metallbauteile Metallkomponenten Metallkonstruktionen MIG Schweißen Roboterschweißen Schweißtechnik Werkzeugbau WIG Schweißen
Mehr erfahren
DVS Group
28.03.2024

Ukrainische Fachkundeunterlagen für DVS-Bildungseinrichtungen

Gute Neuigkeiten für alle DVS-Bildungseinrichtungen: Das seit 2013 bestehende DVS-Lehrmedienportal wurde neu aufgesetzt. Außerdem sind nun auch Fachkunde-Unterlagen zur S...

Arbeitsmarkt Ausbildung E-Hand Schweißen Fachkräftequalifizierung Gasschweißen Handschweißprozesse Lehrunterlagen Lichtbogenhandschweißen Metall-Aktivgasschweißen Weiterbildung Wolfram-Inertgasschweißen
Mehr erfahren
20.03.2024

Muffenschweißen für High-Tech-Gasflaschen

Ventilmuffen sind ein zentrales Element bei Gasflaschen. Bei ALUGAS werden täglich rund 1000 Muffen verschweißt – seit kurzem voll automatisiert. Zwei Motoman-Industriero...

Roboterschweißen Schweißen Schweißtechnik WIG Schweißen
Mehr erfahren
04.03.2024

Schulungskatalog Schweißen, Löten und Beschichten von Castolin Eutectic

Seit Januar 2024 können die Castolin Eutectic Schweiß-, Löt- und Beschichtungslehrgänge online gebucht werden. Die Schulungen werden in Deutschland und Österreich angebot...

Beschichten E-Hand Schweißen Fachkräftequalifizierung Hartlöten Lichtbogenhandschweißen Löten MAG Schweißen MIG Schweißen Pulverflammspritzen Schweißen Spritztechnik Weichlöten WIG Schweißen
Mehr erfahren
Wenn Ihre Reputation von hochqualitativen Schweißnähten abhängt, dann ist die Fronius Artis dank ihres stabilen Lichtbogens die perfekte Wahl.
22.01.2024

Von leichter Hand effizient WIG-Schweißen

Die neue Fronius Artis macht beim WIG-Schweißen ihrem Namen, abgeleitet aus dem Lateinischen „arte“ für Kunst, alle Ehre. Immer, wenn Schweißnähte sowohl optisch als auch...

Handschweißprozesse Schweißtechnik WIG Schweißen Wolfram-Inertgasschweißen
Mehr erfahren