© fotolia.de/piyaphunju

05. – 07.10.2020

EBAM 2020 – 3rd International Conference on Electron Beam Additive Manufacturing

online, Internet

Konferenz

EBAM 2020 – 3rd International Conference on Electron Beam Additive Manufacturing

https://www.ebam.fau.de

EBAM ist die Abkürzung für International Conference on Electron Beam Additive Manufacturing. Die Konferenz zielt darauf ab, spezifische Herausforderungen und Möglichkeiten für die additive Fertigung durch den Elektronenstrahl zu diskutieren. EBAM 2020 bringt Forscher und industrielle Anwender zusammen, um Verbesserungen dieser Technologie zu erzielen.

Seit der ersten EBAM im Jahr 2016 hat das Interesse an diesem Thema mit einer enormen Anzahl von Einsendungen aus der ganzen Welt noch weiter zugenommen. Die Veranstalter hoffen, dass das breite Spektrum an inspirierenden Vorträgen – einschließlich der eingeladenen Keynote-Präsentationen von Wissenschaftlern und der Industrie in Kombination mit hochwertigen Posterpräsentationen – verschiedene fruchtbare Diskussionen und zukünftige Kooperationen einleitet. Organisiert wird die EBAM wird vom Lehrstuhl für Werkstoffkunde und Werkstofftechnik für Metalle (WTM) zusammen mit dem Exzellenzcluster Engineering of Advanced Materials (EAM).

Die EBAM 2020 widmet sich in Schwerpunkten unter anderem folgende Themen:
  • Pulverherstellung und Pulverrückgewinnung
  • Prozessbeobachtung und -kontrolle
  • Neue / modifizierte EBAM-Technologien
  • Verarbeitung und Eigenschaften von metallischen / intermetallischen Legierungen und Verbundwerkstoffen aller Art
  • Sekundär- und Veredelungsarbeiten
  • Modellierung und Simulation

Begleitend zur Konferenz wird es eine Ausstellung geben, bei der Unternehmen und Institute z. B. Pulver, Maschinen, Nachbearbeitungstechniken, Teile, Software usw. präsentieren.

 

Die Vortragsthemen im Überblick (Stand: August 2020)

Montag, 5. Oktober 2020

Electron Beam

  • Electron beam guns and optics for additive manufacture
  • EBMPerform – a H2020 project for developing high-quality, high-speed EBM 3D printing by the integration of high-performance electron sources
  • Open data format for beam scanning in Electron Beam Powder Bed Fusion (E-PBF)
  • Modelling of electron beam absorption in powders
  • Multi-physics modeling of the electron beam additive manufacturing processes: powder spreading, pre-heating, and melting

Titanium

  • Titanium Aluminide, 4 Manufacturing Processes for 1 Blade
  • A study on the chemical and microstructural optimization of the Ti48-2-2 alloy processed by Electron Beam Melting
  • Can manufacturing and filling in-situ during the EBM build job to produce powder metallurgical TiAl components via near net shape HIPing
  • Anelastic Phenomena in Ti6Al4V Additivley Manufactured by Electron Beam Melting
  • On The Improvement of Geometrical Outcomes of EBM Parts with a Novel Design Approach

Aluminium

  • Rapid Alloy Design, Selection & Validation to Mitigate Solidification Cracking in EBAM Processing
  • Electron Beam-Based Additive Manufacturing of Periodic Open Cellular Raney-Copper-Catalysts
  • Selective electron beam melting of Al-Cu-Mg alloy: Processability, Microstructure Characterization, and Mechanical Performance
  • Microstructure refinement for superior ductility of Al–Si alloy by electron beam melting

 

DIENSTAG, 6. Oktober 2020

Powder

  • Fundamental Research on Gas Atomization to Increase Powder Quality and Yields for E-Beam Additive Manufacturing
  • Production and Properties of Gas Atomized TiAl and Ti-alloy EBM-Powders
  • Electron Beam Melting of Alloy 718 – Powder Recycling and its Effect on Defect Protection
  • Influence of powder aging on the process window determination in EB-PBF processes using In718 powder
  • Formation mechanism, microstructure and composition of the spatter formed during EBM processing of IN718

Smoke

  • Breaking the Link Between Build Temperature and Powder Electrical Characteristics Allows Optimizing the Processing Window of EB Additive
  • Avoiding “smoke” with a ball milling in air for alloy powder in powder bed fusion type electron beam additive manufacturing

Iron

  • Microstructural and Mechanical Evaluation of Cr-Mo-V Cold-Work Tool Steel Produced via Electron Beam Melting (EBM)
  • SEBM of wear-resistant materials
  • Electron Beam Melting of INVAR parts with low CTE
  • Square-celled TRIP-steel honeycomb structures produced by electron beam melting

Process Observation

  • Process Monitoring by Evaluation of Backscattered Electrons during Electron Beam Melting
  • Bilateral detector electronic imaging technique for in-situ monitoring of electron beam selective melting
  • In situ optical/near infrared process monitoring of Selective Electron Beam Melting
  • Video imaging methods for in-situ detection of irregular powder bed recoating and hot-spots in EBM
  • Combining In-situ Monitoring and X-Ray Computed Tomography to Assess the Quality of Parts by Electron Beam Melting

Copper

  • Characteristics, Processing and Process Monitoring of High Purity Copper Powders for EB-PBF Additive Manufacturing
  • Effect of surface coating for pure-Cu powders on electron beam melting process
  • Predictive Modeling and Validation of Electron Beam Powder Bed Fusion Additive Manufacturing of Metals at the Mesoscale
  • Development of CuCrZr Components by Electron Beam Melting (EBM) Technology

 

MITTWOCH, 7. Oktober 2020

Materials

  • The role of atom probe tomography in additive manufacturing of engineering alloys by electron beam melting
  • Nano-structured NiAl-Cr(Mo) in-situ composites processed by additive manufacturing
  • Processing refractory metals by electron beam melting: Challenges and Potentials
  • From Research to Production: Selective Electron Beam Melting of a High Wear Resistant CoCrW Alloy for Industrial Application

Nickel

  • Data Driven Scan Strategies for Microstructure Development in EBM
  • From atoms to hot cracks in AM Ni-based superalloys: a fundamental study
  • CMSX-4 Properties (+ Simulation)
  • Transition from columnar to equiaxed morphology using a novel linear melting strategy in EB-PBF of Alloy 718
  • Modelling materials with tailored grain structures - combining grain growth models and crystal plasticity

Concluding Remarks

Das ausführliche Veranstaltungsprogramm mit Detailangaben finden Sie hier.