Forschung
Beim Projekt „QuKu-ML“ programmierten die Forscher*innen der TH Köln einen Roboter als zentrale Automatisierungseinheit und führten Tests zur Qualitätskontrolle durch. - © Cologne Cobots Lab/TH Köln
06.08.2024

Qualitätskontrolle beim Spritzgießen verbessern

Qualitätskontrolle beim Spritzgießen verbessern

Beim Spritzgießen entstehen Kunststoffprodukte mit optisch anspruchsvollen Oberflächen, unter anderem für die Automobilindustrie. Um fehlerhafte Teile zu entdecken, können Bildanalyseverfahren eingesetzt werden. Diese müssen bislang zeit- und kostenintensiv trainiert werden, da die Fehlerbilder sehr vielfältig sind. Daher ist die Einsatzfähigkeit von KI in der Produktion beschränkt. Um die Qualitätskontrolle zu verbessern und zu beschleunigen, hat die TH Köln gemeinsam mit zwei Industriepartnern eine automatisierte, kamerabasierte KI-Lösung entwickelt und erprobt. Beim Projekt „QuKu-ML“ programmierten die Forscherinnen und Forscher der TH Köln einen Roboter als zentrale Automatisierungseinheit und führten Tests zur Qualitätskontrolle durch.

„In der Kunststoffverarbeitung ist die schnelle Erkennung von Ausschuss von hohem Interesse, vor allem bei Bauteilen, die in großen Stückzahlen produziert werden. Hier KI-Anwendungen zu etablieren, ist aufgrund der Komplexität jedoch eine gewaltige Herausforderung. Insbesondere in der Qualitätskontrolle ist es sehr aufwändig, die notwendigen Trainingsdaten im laufenden Betrieb zu sammeln und zu verifizieren. Der Einsatz von Künstlicher Intelligenz ist dennoch sinnvoll, da eine manuelle Qualitätskontrolle lange dauert und fehleranfällig ist“, sagt Prof. Dr. Anja Richert vom Cologne Cobots Lab (CCL) der TH Köln.

Ziel des Projekts war es, die Qualitätskontrolle eines per Spritzguss hergestellten Bauteils für die Automobilindustrie mit Hilfe eines KI-Algorithmus zu vereinfachen. - © Cologne Cobots Lab/TH Köln
Ziel des Projekts war es, die Qualitätskontrolle eines per Spritzguss hergestellten Bauteils für die Automobilindustrie mit Hilfe eines KI-Algorithmus zu vereinfachen. © Cologne Cobots Lab/TH Köln
Abweichungen vom Sollbild identifizieren

Ziel des Projekts „QuKu-ML“ war es daher, die Qualitätskontrolle eines per Spritzguss hergestellten Bauteils für die Automobilindustrie mit Hilfe eines Algorithmus zu vereinfachen. Das Team der TH Köln programmierte zur Automatisierung dieses Prozesses einen Roboter, der das Bauteil in verschiedenen Positionen vor einer Kamera platzierte, so dass Bilder aus 16 verschiedenen Perspektiven entstanden. Mit einem finalen Datensatz aus insgesamt rund 1.600 Aufnahmen wurde eine Künstliche Intelligenz darauf trainiert, Abweichungen von einem mangelfreien Bauteil wie Kratzer, Risse, fehlende Strukturen oder Verformungen schnell zu erkennen.

Für eine möglichst effektive Anomalieerkennung analysierten die Forscherinnen und Forscher die Verteilung der Bildwerte bei sogenannten Anomalie-Heatmaps von rund 1.600 Bildaufnahmen. - © Cologne Cobots Lab/TH Köln
Für eine möglichst effektive Anomalieerkennung analysierten die Forscherinnen und Forscher die Verteilung der Bildwerte bei sogenannten Anomalie-Heatmaps von rund 1.600 Bildaufnahmen. © Cologne Cobots Lab/TH Köln

„Die Anomalie-Detektion bietet im industriellen Kontext eine Reihe von Vorteilen gegenüber der konventionellen Fehlererkennung. Letztere benötigen eine ausreichende Anzahl von Bildern, auf denen die jeweiligen Fehlertypen klar erkennbar sind. Die Mängel müssen dabei manuell markiert und beschriftet werden. Perfekte Teile sind im Vergleich zu mangelhaften Teilen meist in großer Stückzahl verfügbar. Also kann eine Künstliche Intelligenz angelernt werden, die Perfektion erkennt und Abweichungen von diesem Sollzustand schnell detektiert. Das Ergebnis ist eine Anomalie-Heatmap, auf der mangelhafte Bildbereiche hohe Anomaliewerte einnehmen, die farblich dargestellt werden können“, erklärt Nicolas Kaulen, wissenschaftlicher Mitarbeiter am CCL.

Bildpunkte schaffen Klarheit

Für eine möglichst effektive Anomalieerkennung analysierten die Forscherinnen und Forscher die Verteilung der Werte der 1.600 Heatmaps, wie Kaulen ausführt: „Lag die Anzahl der Bildpunkte mit einem Anomaliewert über oder unter einem Schwellenwert, erkannte die KI eine Abweichung und gab den Befehl, das entsprechende Bauteil auszusortieren. Mit diesem Verfahren haben wir eine Treffergenauigkeit von 91 Prozent erreicht.“

Für die industrielle Serienfertigung ist dieser Wert allerdings noch zu gering. „Der Nachteil des Schwellenwertverfahrens ist, dass bei der Qualitätskontrolle etwas mehr Produktionsausschuss entsteht. Wir haben zum Beispiel festgestellt, dass Schmutzpartikel, die in den meisten Fällen kein Risiko für den technischen Ablauf darstellen, vom Algorithmus trotzdem als Anomalie wahrgenommen werden. Hier besteht weiterer Forschungsbedarf, um die Detektionsmethode zu verfeinern“, so Richert. In einem Folgeprojekt sollen die Erkenntnisse vertieft und auf weitere industrielle Anwendungen übertragen werden.

Über das Projekt

Das Projekt „QuKu-ML: Kamerabasierte Qualitätsbewertung beim Kunststoff-Spritzguss mit Hilfe von ML-Strategien“ wurde unter der Leitung von Prof. Dr. Anja Richert vom Cologne Cobots Lab der TH Köln durchgeführt. Die Forscher*innen programmierten den Roboter als zentrale Steuerungseinheit und führten die Tests zur Qualitätskontrolle durch. Der Konsortialführer SHS plus GmbH beschäftigt sich mit der Optimierung von Prozessen, Produktqualität und Effizienz in der Kunststoffverarbeitung. Die sentin GmbH ist ein Unternehmen, das sich auf Softwarelösungen mit Künstlicher Intelligenz für zerstörungsfreie Prüfungen (ZfP) und industrielle Inspektionen, zum Beispiel Bildauswertung, spezialisiert hat. Das Vorhaben wurde vom Bundesministerium für Bildung und Forschung und dem Deutschen Zentrum für Luft- und Raumfahrt als Projektträger im Rahmen der Initiative „KMU-innovativ“ mit 897.126 Euro über drei Jahre gefördert.

Die TH Köln zählt zu den innovativsten Hochschulen für Angewandte Wissenschaften. Sie bietet Studierenden sowie Wissenschaftlerinnen und Wissenschaftlern aus dem In- und Ausland ein inspirierendes Lern-, Arbeits- und Forschungsumfeld in den Sozial-, Kultur-, Gesellschafts-, Ingenieur- und Naturwissenschaften. Zurzeit sind rund 23.500 Studierende in etwa 100 Bachelor- und Masterstudiengängen eingeschrieben. Die TH Köln gestaltet Soziale Innovation – mit diesem Anspruch begegnen wir den Herausforderungen der Gesellschaft. Unser interdisziplinäres Denken und Handeln, unsere regionalen, nationalen und internationalen Aktivitäten machen uns in vielen Bereichen zur geschätzten Kooperationspartnerin und Wegbereiterin.

(Quelle: Presseinformation der Technischen Hochschule Köln)

Schlagworte

AutomatisierungAutomobilindustrieKunststoffeKunststoffprodukteQualitätssicherungRobotikSpritzgießen

Verwandte Artikel

26.01.2026

Kunststofffügen beim 33. Internationalen Kolloquium Kunststofftechnik in Aachen

Am 4. und 5. März 2026 findet das 33. Internationale Kolloquium Kunststofftechnik im Eurogress in Aachen statt.

ATA CFK Faserverbunde Kunstsoffverarbeitung Kunststoffe Kunststofffügen Laserstrahlschweißen Polymere Prozessmodellierung Recycling Thermoplaste Wasserstoff Wasserstoffwirtschaft
Mehr erfahren
21.01.2026

Neuerscheinung Merkblatt DVS 2909-3

Mit Ausgabedatum Januar 2026 ist das Merkblatt DVS 2909-3 „Reibschweißen von metallischen Werkstoffen − Metallografische Merkmale einer Reibschweißverbindung und Qualitä...

DVS-Berichte Merkblatt Qualitätssicherung Regelwerk Reibschweißen Schweißen Schweißverfahren Werkstoffe Zerstörende Prüfung Zerstörungsfreie Prüfung
Mehr erfahren
MiniTec präsentiert Automatisierungslösungen auf den Fachmessen all about automation an mehreren Standorten.
19.01.2026

Automatisierungslösungen für die Industrie

MiniTec präsentiert Produkte und Lösungen rund um das Thema Automatisierung sowie ergänzende Technologien auf den Fachmessen all about automation in Berlin, Friedrichshaf...

Automation Automatisierung Handhabungstechnik Industrieautomation Lineartechnik Qualitätssicherung Robotik
Mehr erfahren
18.01.2026

Expertin sagt Zukunft mit „Geister-Fabriken“ voraus

Jane Enny van Lambalgen: „Ein zunehmender Teil der Produktion wird künftig in menschenleeren Fabriken allein mit Robotern stattfinden. Diese Dark Factories können die Dei...

Arbeitskräftemangel Automatisierung Dark Factory Deindustrialisierung Digitaler Zwilling Roboter Sondermaschinenbau
Mehr erfahren