International
Fraunhofer IWS researchers are developing the components and cells to evaluate the new material system for solid-state batteries. - © ronaldbonss.com/Fraunhofer IWS
12.01.2024

Silicon Nitride-based Particles as Promising Anode Material for Solid State Batteries

Silicon Nitride-based Particles as Promising Anode Material for Solid State Batteries

Novel storage material for solid-state batteries is the focus of the project “FB2-SiSuFest – Evaluation of silicon anodes in sulfide solid-state batteries”. As a promising anode material, silicon nitride-based particles could enable a high storage capacity with stable and safe operation. The research alliance of renowned partners has received funding from the Federal Ministry of Education and Research (BMBF) amounting to 1.7 million euros as part of the “Clusters Go Industry” funding guideline as part of the FestBatt cluster. The project will run from December 2023 through November 2025.

The ongoing development in the field of solid-state batteries faces the challenge of successfully transferring high-energy lithium metal anodes into industrial applications. The “FB2-SiSuFest” project investigates anode materials based on silicon nitride (SiNx) as a promising alternative to conventional solutions. This material could contribute to developing high-performance, safe, and stable battery cells. The research activities focus on producing and evaluating silicon nitride-based particles as anode material in sulfide solid-state batteries. The project aims to improve cycle stability significantly compared to conventional anode materials. By using amorphous nanoparticles of silicon nitride, the project partners aim to overcome the electrochemical and morphological challenges of applying pure silicon.

Silicon Nitride: Possible Alternative to Lithium Metal Anode?

Research within the FestBatt cluster focuses, for example, on different variants of sulfide-based solid-state batteries as pioneering technologies. Despite progress, some questions still need to be answered regarding the successful application of the high-energy lithium metal anode. Silicon could offer itself as an alloy-forming active material. However, there are still challenges due to electrochemical and morphological instabilities. These could be overcome by using silicon nitrides as amorphous nanoparticles by creating advantageous phases during the charging and discharging process. The research network's main objective is to further develop innovative SiNx active materials and evaluate them in composite anodes and sulfide solid-state batteries. The project team bases its work on systematic investigations, in-depth analysis, and material and process optimization, in particular, to evaluate charging and cycle stability compared to conventional silicon particles.

The experience and networking of the partner institutions, including the Institute for Inorganic and Analytical Chemistry at the University of Münster, the Fraunhofer Institute for Material and Beam Technology IWS in Dresden, the Institute for Energy and Material Processes at the University of Duisburg-Essen and the Institute of Physical Chemistry at Justus Liebig University Giessen form the solid foundation for the project. The collaboration strengthens not only the scientific exchange but also the integration with the thiophosphate and production platforms in the FestBatt Cluster.

(Source: Fraunhofer IWS Press Release)

Schlagworte

Battery TechnologyResearch

Verwandte Artikel

02.02.2025

On the Way to a Cost-Effective Sodium Battery

The use of sodium batteries promises both economic and ecological advantages. In order to further increase the efficiency in the production of the ceramic electrolyte, an...

Battery Battery Technology Research
Read more
31.01.2025

Green Hydrogen Research in the U.S.

Innomotics, a global manufacturer for electric motors and large drive systems, has received an order from the U.S. Department of Energy’s National Renewable Energy Labora...

Electrolyzer H2 Hydrogen Research
Read more
27.01.2025

With Machine Learning to High-Performance Photovoltaics

Researchers at KIT demonstrate that machine learning (ML) is a crucial tool for improving the measurement technology required for the commercial production of perovskite...

Photovoltaic Research Research Paper Solar
Read more
08.01.2025

Overcoming Material Shortages

The scarcity of raw materials poses severe challenges to global industries. Recycling and the increased use of secondary raw materials have become essential for many comp...

Materials Recycling Research Supply Chain
Read more
06.12.2024

New Battery-Powered Welding Tool

aquatherm introduces a new battery-powered welding tool designed to make welding polypropylene (PP) pipes easier and faster for bench and hands-free use.

Battery Technology Pipes Tools Welding
Read more