International
Bio-based TPEs have a lower product carbon footprint than established alternatives that are not based on renewable raw materials. - © 2023 KRAIBURG TPE
30.10.2023

Bio-based TPEs with Variable Proportion of Sustainable Raw Materials

KRAIBURG TPE responds to the issue of bio-based materials by supplying bio-based TPEs with a variable proportion of sustainable raw materials

KRAIBURG TPE is presenting thermoplastic elastomers (TPEs) that have a variable proportion of renewable raw materials. By introducing these new compounds, the global TPE manufacturer is expanding its THERMOLAST® R range of more sustainable solutions by adding a line of products from renewable raw material sources. Bio-based TPEs also have a lower product carbon footprint than established alternatives that are not based on renewable raw materials.

Sustainability is a key aspect of the design phase. It is only when the idea of sustainability plays a major role from the very start of a project that it can contribute to the project’s success in the longer term. KRAIBURG TPE’s customers already have access to more sustainable compounds that contain proportions of post-industrial or post-consumer recycled materials, particularly in the consumer and automotive sectors. KRAIBURG TPE is now complementing its range of more sustainable solutions by adding bio-based TPEs made of raw materials that support the transition from compounds based on fossil resources to alternative products based on renewable materials and make this transition attractive.

When evaluating new raw materials for bio-based TPEs, KRAIBURG TPE is focusing on materials that are not used for food production. These are raw materials such as agricultural by-products or waste materials from food production that cannot be used as food even if they are further processed. KRAIBURG TPE critically evaluates the origin of raw materials in order to meet the company’s high self-imposed requirements. By working closely with suppliers, KRAIBURG TPE ensures a delivery capability for bio-based and recycled raw materials comparable to that for conventional base polymers.

Using bio-based TPEs can reduce a product’s carbon footprint (PCF) by up to 50 percent as compared to TPEs made of fossil-based materials. PCF refers to the total amount of greenhouse gas emissions, particularly carbon dioxide (CO2), associated with the production, usage and disposal of a particular product or service. Transparency and understanding the PCF can enable end customers and processing companies to make informed decisions when selecting materials in order to produce and market more sustainable products. This aspect is currently of interest in all markets where there’s a demand for materials with reduced carbon footprints. By using renewable raw materials in the production of bio-based TPEs, KRAIBURG TPE is actively helping customers to achieve their sustainability targets.

Dr. Tobias Brückner, Project Manager Advance Development at KRAIBURG TPE. - © 2023 KRAIBURG TPE
Dr. Tobias Brückner, Project Manager Advance Development at KRAIBURG TPE. © 2023 KRAIBURG TPE

Bio-based TPEs provide neutral odor, touch, grip and adhesion properties that are highly comparable to those of fossil-based TPEs. The new products include solutions such as compounds with adhesion to PP, ABS/PC and PA within a hardness range between 30 and 85 Shore A. Individual compounds have a bio-content of more than 60%. Both compounds with adhesion to PP and to polar materials can be colored. The materials have been thoroughly tested in injection molding and extrusion and have processing properties comparable to those of fossil-based TPEs.

© KRAIBURG TPE
© KRAIBURG TPE

“With bio-based TPEs, we are filling a gap in our portfolio and taking another step toward more sustainable TPEs. Our bio-based TPEs provide more sustainable solutions, while maintaining the usual performance and reducing the product carbon footprint. We are looking forward to projects that enable us to make the transition from fossil-based to more sustainable raw materials,” sums up Dr. Tobias Brückner, Project Manager Advance Development at KRAIBURG TPE.

Bio-based TPEs are currently produced in Germany and are available worldwide immediately.

(Source: Press Release of KRAIBURG TPE)

Schlagworte

Renewable MaterialsSustainabilityThermoplastic Elastomers

Verwandte Artikel

17.02.2026

Strengthening Michigan Footprint

Oerlikon announced that it will continue to invest in its Michigan operations and is evaluating options for enlarging manufacturing capacity in 2028 to meet growing custo...

Advanced Materials Coating Materials R&D Surface Technology Surface Treatment Surfacing Sustainability
Read more
14.02.2026

System Expertise for Reliable and Recyclable Products

Fraunhofer LBF strategically realligns in response to the growing demand from industry for recyclable, reliable high-tech products to stay economical as well as safe and...

AI Circular Economy Digital Twin Joining Plastics Plastics R&D Recycling Research SME Sustainability
Read more
14.02.2026

Cooling Solutions for Data Centres

Streaming, cloud services and artificial intelligence – all rely on powerful data centres – and these, in turn, depend on reliable cooling solutions to manage the signifi...

AI Data Centre Energy Event IT Joining Plastics Pipes Plastic PPP Sustainability
Read more
10.02.2026

Digital Event: Future of Bioadhesives

Specialists and experts from all over the world have registered for this current edition of the digital event series “Future of Bio” on February 24 and 25, 2026.

Adhesives Bioadhesives Chemicals Joining Plastics Material Technology Plastics SME Start-up Sustainability
Read more
08.02.2026

Geothermal Energy - Expansion Accelerated

The Geothermal Energy Accelration Act – signed in December – will make approval processes for geothermal plants, heat pumps, thermal storage systems and heat pipelines wi...

Climate Electricity Energy Geothermal Energy Acceleration Act Geothermal Heat Germany Pipes Power Grid Renewable Energy Sustainability
Read more