Forschung Technologien
Beim 3D-Lichtblattdruck werden mit rotem und blauem Laserlicht präzise und schnell Objekte im Mikrometermaßstab gedruckt. - ©  Vincent Hahn, KIT
17.10.2022

Blitzschnelles 3D-Mikrodrucken mit zwei Lasern

Mit vereinten Kräften – Blitzschnelles 3D-Mikrodrucken mit zwei Lasern

Objekte aus Kunststoff präzise, schnell und kostengünstig zu drucken, ist das Ziel vieler 3D-Druckverfahren. Geschwindigkeit und hohe Auflösung sind jedoch nach wie vor eine technologische Herausforderung. Ein Forschungsteam des Karlsruher Instituts für Technologie (KIT), der Universität Heidelberg und der Queensland University of Technology (QUT) ist diesem Ziel ein großes Stück nähergekommen. Es entwickelte ein Laserdruckverfahren, mit dem mikrometergroße Teile innerhalb eines Wimpernschlags gedruckt werden können. Die Arbeit veröffentlichte das internationale Team in Nature Photonics. (DOI: 10.1038/s41566-022-01081-0)

Der 3D-Druck im Stereolithographie-Verfahren ist derzeit eines der beliebtesten additiven Fertigungsverfahren für Kunststoffe, sowohl für private als auch für industrielle Anwendungen. Bei der Stereolithografie werden die Schichten eines 3D-Objekts nacheinander in einen mit Harz gefüllten Behälter projiziert. Das Harz wird durch UV-Licht gehärtet. Bisherige Stereolithografie-Verfahren sind jedoch langsam und haben eine zu geringe Auflösung. Der von den Forschenden des KIT eingesetzte 3D-Lichtblattdruck (engl. Light-Sheet 3D Printing) ist eine schnelle und hochauflösende Alternative.

3D-Druck mit zwei Farben in zwei Stufen

Beim „Light-Sheet-3D-Druck“ wird blaues Licht in einen Behälter projiziert, der mit einem flüssigen Harz gefüllt ist. Durch das blaue Licht wird das Harz voraktiviert. In einer zweiten Stufe liefert ein roter Laserstrahl die zusätzliche Energie, die zum Aushärten des Harzes erforderlich ist. Schnell drucken lassen sich aber im 3D-Druck nur Harze, die rasch aus dem voraktivierten Zustand in ihren ursprünglichen Zustand zurückkehren. Erst dann kann die nächste Schicht gedruckt werden. Die Rückkehrzeit diktiert folglich die Wartezeit zwischen zwei aufeinander folgenden Schichten und damit die Druckgeschwindigkeit. „Bei dem Harz, das wir verwendet haben, betrug die Rückkehrzeit weniger als 100 Mikrosekunden, was hohe Druckgeschwindigkeiten ermöglicht“, so Erstautor Vincent Hahn vom Institut für Angewandte Physik (APH) des KIT.

Mikrometergroße Strukturen in nur einem Wimpernschlag

Um die Vorteile dieses neuen Harzes zu nutzen, haben die Forschenden einen speziellen 3D-Drucker gebaut. In diesem Drucker werden blaue Laserdioden verwendet, um Bilder mithilfe eines hochauflösenden Displays mit hoher Bildfrequenz in das flüssige Harz zu projizieren. Der rote Laser wird zu einem dünnen „Lichtblatt“-Strahl geformt und kreuzt den blauen Strahl senkrecht im Harz. Mit dieser Anordnung konnte das Team mikrometergroße 3D-Teile in wenigen hundert Millisekunden, also in einem Wimpernschlag, drucken. Dabei soll es jedoch nicht bleiben: „Mit empfindlicheren Harzen könnten wir sogar LEDs statt Laser in unserem 3D-Drucker einsetzen“, sagt Professor Martin Wegener vom APH. „Letztlich wollen wir zentimetergroße 3D-Strukturen drucken und dabei die Auflösung im Mikrometerbereich und die hohe Druckgeschwindigkeit beibehalten. “

Die Publikation entstand im Rahmen des gemeinsamen Exzellenzclusters „3D Matter Made to Order“ des KIT und der Universität Heidelberg. Beteiligt seitens der Universität Heidelberg war Juniorprofessorin Dr. Eva Blasco, Leiterin einer Arbeitsgruppe am Organisch-Chemischen Institut und am Institute for Molecular Systems Engineering and Advanced Materials.

Original Publikation:

V. Hahn, P. Rietz, F. Hermann, P. Müller, C. Barner-Kowollik, T. Schlöder, W. Wenzel, E. Blasco, and M. Wegener: Light-sheet three-dimensional microprinting via two-colour two-step absorption. Nature Photonics, 2022. DOI: 10.1038/s41566-022-01081-0 https://www.nature.com/articles/s41566-022-01081-0

(Presseinformation des KIT – Karlsruher Institut für Technologie)

Schlagworte

3D Druck3D-DruckAdditive FertigungKunststoffeLasertechnologien

Verwandte Artikel

26.01.2026

Kunststofffügen beim 33. Internationalen Kolloquium Kunststofftechnik in Aachen

Am 4. und 5. März 2026 findet das 33. Internationale Kolloquium Kunststofftechnik im Eurogress in Aachen statt.

ATA CFK Faserverbunde Kunstsoffverarbeitung Kunststoffe Kunststofffügen Laserstrahlschweißen Polymere Prozessmodellierung Recycling Thermoplaste Wasserstoff Wasserstoffwirtschaft
Mehr erfahren
Facturee baut Service weiter aus
17.01.2026

Digital-Procurement-Anbieter stärkt Technologie und Service

Facturee hat mit seiner digitalen Beschaffungsplattform für maßgefertigte Zeichnungsteile den Wachstumskurs im Jahr 2025 fortgesetzt und plant einen Personalzuwachs von r...

3D-Druck Automobilbranche Blechbearbeitung Fertigung Industrie Mittelstand Qualitätssicherung
Mehr erfahren
Die neu aufgestellte Geschäftsführung des SKZ (von links): Dr. Benjamin Baudrit, Prof. Dr.-Ing. Martin Bastian, Dr. Thomas Hochrein und Dr. Giovanni Schober
09.01.2026

Geschäftsführung neu strukturiert

Mit Wirkung zum 1. Januar 2026 hat sich die Geschäftsführung des Kunststoff-Zentrums SKZ neu aufgestellt. SKZ-Vorstandsvorsitzender Prof. Dr.-Ing. Martin Bastian reagiert...

Forschung Fügen von Kunststoff Geschäftsführung Kunststoffe Management Vorstand Zertifizierung
Mehr erfahren
08.01.2026

Konferenz zum 3D-Metalldruck

Die Konferenz WAAMathon #3 zeigt industrielle Perspektiven des DED-Arc (auch als WAAM – Wire Arc Additive Manufacturing bezeichnet) am 11. Juni 2026 in Berlin.

Additive Fertigung Auftragschweißen DED-Arc Lichtbogen Metalldraht Metalldruck WAAM
Mehr erfahren
09.12.2025

Automatisierte Nachbearbeitung bei additiven Fertigungsprozesse

Auf der Formnext 2025 zeigte AM Solutions – 3D post processing technology, wie automatisierte Nachbearbeitung die Wirtschaftlichkeit und Reproduzierbarkeit additiver Fert...

Additive Fertigung Automation Nachbearbeitung Oberflächenbearbeitung Reproduzierbarkeit Thermoplastische Bauteile Wirtschaftlichkeit
Mehr erfahren