Forschung
Zwei Testbauteile aus PA12, die mittels Selektivem Lasersintern hergestellt wurden: links nach der Bestrahlung mit Kunststoffgranulat, rechts ohne Strahlbehandlung. - © Fraunhofer IPA/Foto: Mark Becker
27.02.2022

Additive Fertigung: Bauteile unter Beschuss

Additive Fertigung: Bauteile unter Beschuss

Bisher hat man sich auf Erfahrungswerte gestützt, wenn es darum ging, die Oberflächen additiv gefertigter Bauteile zu bestrahlen. Doch nun haben das Fraunhofer IPA und die Microstrahltechnik-Vertriebs GmbH in einer wissenschaftlichen Versuchsanordnung geklärt, welches Strahlmittel mit welchen Prozessparametern sich am besten für einen bestimmten Werkstoff eignet.

Wenn additiv gefertigte Kunststoffbauteile frisch aus dem 3D-Drucker kommen, wirken sie meist grob und unfertig. Sie sind rau, man erkennt Schichtrillen und speziell beim Lasersintern haften ihnen Pulverreste an. Um die Bauteile zu reinigen und die Oberflächen zu glätten, wird die Strahltechnik, speziell die Druckluftstrahltechnik, eingesetzt. Dabei wird ein festes Strahlmittel, meist mineralischer, metallischer oder synthetischer Basis, mittels Druckluft beschleunigt und auf die Bauteiloberfläche gelenkt, sodass diese bearbeitet wird. Welches Strahlmittel für welchen Werkstoff am besten geeignet ist und mit welchen Prozessparametern die besten Ergebnisse erzielt werden, blieb bisher dem Erfahrungswissen der Anwender überlassen.

Doch nun hat Mark Becker vom Zentrum für additive Produktion (ZAP) am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA in enger Zusammenarbeit mit der MST Microstrahltechnik-Vertriebs GmbH aus Reutlingen diese Frage in einer wissenschaftlichen Versuchsanordnung geklärt. Dazu fertigten die Forschungspartner zunächst Musterbauteile aus den drei Thermoplasten Polylactid (PLA), Polyamid (PA12) und Polyetheretherketon (PEEK), die in unterschiedlichen Produktsegmenten für die additive Fertigung relevant sind. Anschließend wurden die Musterbauteile am Fraunhofer IPA automatisiert und bei MST manuell mit Glasbruch, Kunststoffgranulat, Keramikkugeln oder dem Mineral Korund bestrahlt.

Wissen um richtige Strahlbehandlung ist bares Geld wert

Vor und nach der Strahlbehandlung wurde die Rauheit der Musterbauteile gemessen. Dabei zeigte sich beispielsweise, dass Bauteile aus PLA eine gute Oberflächenverbesserung aufweisen, wenn sie mit Glasbruch bestrahlt worden sind. Außerdem konnte nachgewiesen werden, dass der automatisierte Strahlprozess gleichmäßigere und glattere Oberflächen hervorbringt als die manuelle Strahlbehandlung.

Das Wissen um die richtige Strahlbehandlung ist bares Geld wert. Denn einerseits unterscheiden sich die Materialkosten je nach Strahlmittel und andererseits bedürfen die Bauteile je nach Druckverfahren mehr oder weniger dringend einer Strahlbehandlung. „Vor allem beim Hochtemperaturkunststoff PEEK, der in der Medizintechnik gefragt ist, rächt sich das falsche Strahlmittel“, sagt Becker. „Der Werkstoff ist recht teuer und schwierig zu drucken. Da ist es ganz besonders ärgerlich, wenn man das Bauteil bei der Strahlbehandlung versehentlich unbrauchbar macht.“

(Quelle: Presseinformation des Fraunhofer-Instituts für Produktionstechnik und Autimatisierung IPA)

Schlagworte

Additive FertigungDruckstrahltechnikLasersinternThermoplasten

Verwandte Artikel

Tobias Röcker (CEO, PartsToGo, Mitte), Manuel Kappler (Application Engineer, PartsToGo, links) und Kai Wagner (Sales Manager, Sonotronic, rechts) präsentieren bei der offiziellen Übergabe das Ultraschall-Handschweißgerät iSONIC WAVE HSG sowie zwei 3D-gedruckte Kunststoffteile mit den Logos beider Unternehmen, die zu einem Bauteil verschweißt wurden.
22.11.2025

Strategische Partnerschaft: Ultraschall trifft 3D-Druck

Sonotronic, ein Unternehmen, das sich auf Ultraschalltechnologie spezialisiert hat, und die PartsToGo GmbH, Fachhändler und Dienstleister für industrielle 3D-Drucklösunge...

3D-Druck Additive Fertigung Fügen von Kunststoffen Schweißen Technologie Ultraschallschweißen
Mehr erfahren
StAlVac verbindet datengestützte Materialentwicklung, Additive Fertigung und Werkstoffinnovation – für die nächste Generation hybrider Leichtbauteile
15.11.2025

Datengestützte Materialentwicklung für den metallbasierten Leichtbau

Multimaterialbauteile aus Aluminium und Stählen mit geringer Dichte gelten als ein Schlüssel für den Leichtbau der Zukunft. Doch ihre Herstellung ist komplex und fehleran...

Additive Fertigung Aluminium Effizienz Hybridbauteile Laserstrahlauftragschweißen Leichtbau Polymere Werkstoffe Stahl
Mehr erfahren
Rendering des Fraunhofer-IWU-Messestands für die Formnext. Gäste können die Exponate in den frei stehenden Elementen von mehreren Seiten betrachten.
13.11.2025

3D-gedruckter Messestand auf der Formnext

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (IWU) präsentiert neue Materialien für die additive Fertigung am selbst gedruckten Messestand.

3D-Druck Additive Fertigung Laserstrahl LPBF Luft- und Raumfahrt Luftfahrttechnik Materialien Metallpulver Titanaluminid Wolfram
Mehr erfahren
12.11.2025

Optimale 3D-Druck-Oberflächen für den Feinguss

Das Projekt Opti3D am ifw Jena beschäftigt sich mit der Optimierung von FDM-Verfahren mit verschiedenen Materialien.

3D-Druck Additive Fertigung FDM-Verfahren Feinguss Kunststoffe Materialien Werkzeuge
Mehr erfahren
Wire Arc Additive Manufacturing gehört zu den Directed Energy Deposition (DED) Prozessen. Es basiert auf dem Lichtbogenschweißen.
06.11.2025

Neues Assistenzsystem vereinfacht robotergestütztes Auftragschweißen

Das Fraunhofer IAPT hat gemeinsam mit Projektpartnern ein digitales Assistenzsystem mit Mixed-Reality XR-Brillen für robotergestütztes Auftragschweißen (DED-Arc) entwicke...

3D-Druck Additive Fertigung Additive Produktion Auftragschweißen DED-Arc Lichtbogen Metalldraht WAAM
Mehr erfahren