Trendthema
In den „AM FATIGUE LABS“ entwickelt das Fraunhofer LBF Methoden, um mittels moderner Analysetechnik die Beanspruchungen für additiv gefertigte Bauteile zu simulieren und daraus Bemessungsempfehlungen für die zuverlässige Bauteilgestaltung abzuleiten. - © Fraunhofer LBF/Raapke
17.10.2020

Additive Fertigung: Neues Laboratorium simuliert Bauteil-Beanspruchungen

Additive Fertigung: Neues Laboratorium simuliert Bauteil-Beanspruchungen

Die additive Fertigung stößt derzeit in vielen Bereichen des Maschinen-, Anlagen- und Fahrzeugbaus auf ein stetig wachsendes Interesse. Um die Zuverlässigkeit derartig gefertigter Bauteile besser steuern zu können, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF mit den „AM FATIGUE LABS“ ein neues Laboratorium eingerichtet. Darin werden Methoden entwickelt, die Beanspruchungen für additiv gefertigte Bauteile simulieren, die wiederum als Grundlage für Bemessungsempfehlungen dienen.

Mit diesen realitätsnahen Simulationen lassen sich zutreffende Bemessungskennwerte zur Auslegung solcher Bauteile ermitteln. Sie gewährleisten außerdem eine verlässliche Designvalidierung, indem sie den Einfluss sämtlicher relevanter Prozessparameter, der Betriebsbeanspruchungen sowie, je nach Anwendungsfall, Umwelteinflüsse berücksichtigen. Dabei steigern eigens entwickelte Belastungssimulatoren die Präzision und Reproduzierbarkeit der Messungen. Dies ermöglicht einen Einblick in das zyklische Werkstoff- und Bauteilverhalten, der mit klassischen Prüfmethoden kaum gelingt.

Um die Vorteile der additiven Fertigung im Sinne des Leichtbaus auch für sicherheitsrelevante Komponenten erschließen zu können, sind zahlreiche Herausforderungen im Wechselfeld von Bauteilgeometrie, Fertigung, Betriebsbeanspruchungen und Umwelteinflüssen zu meistern. Abhängig u.a. von der Bauteilgeometrie, der Belichtungsstrategie und dem verwendeten Werkstoff, lassen sich nahezu beliebige Eigenschaftsgradienten im Bauteil einstellen. Diese können jedoch auch dazu führen, dass geometrisch identische Bauteile unter gleicher Belastung deutlich unterschiedliches Betriebsverhalten und schließlich Lebensdauern haben.

Lokale Phänomene treiben Bauteilermüdung

Der Erkenntnis, dass die Ermüdung von Bauteilen durch lokale Phänomene getrieben wird, kommt vor allem bei additiv gefertigten Komponenten eine gesteigerte Bedeutung zu. „Die neuen Freiheitsgrade bei der Bauteilentwicklung erfordern ein neues Bemessungskonzept, um das Potenzial dieser Fertigungstechnologie auch für zyklisch beanspruchte, sicherheitsrelevante Bauteile heben zu können“, erklärt Dr. Rainer Wagener, unter dessen Federführung das neue Laboratorium am Fraunhofer LBF errichtet wurde.

Um die Zuverlässigkeit additiv gefertigter Bauteile besser steuern zu können, hat das Fraunhofer LBF die „AM FATIGUE LABS“ eingerichtet. - © Fraunhofer LBF/Raapke
Um die Zuverlässigkeit additiv gefertigter Bauteile besser steuern zu können, hat das Fraunhofer LBF die „AM FATIGUE LABS“ eingerichtet. © Fraunhofer LBF/Raapke

Der Herstellungsprozess induziert zum einen geometrische Defekte in Form von Poren, Einschlüssen oder rauen Oberflächen, zum anderen führt die lokal stark begrenzte Erwärmung zur Ausbildung signifikanter Eigenschaftsgradienten. Neben den Parametern der Belichtungsstrategie oder des Prozessgases die direkt vom Benutzer gesteuert werden können, spielt unter anderem auch die Baurichtung sowie die Auslegung erforderlicher Stützstrukturen eine erhebliche Rolle bei der Ausbildung der Werkstoffmikrostruktur und somit der lokalen Eigenschaften inklusive der Defektverteilung.

Optische Dehnungsmessung bringt neue Erkenntnisse

In den AM FATIGUE LABS setzt das Team des Fraunhofer LBF unterschiedliche optische Dehnungssensoren ein, deren Messsignale über die erforderliche Echtzeitfähigkeit verfügen. Auf diese Weise wird eine Dehnungsregelung beispielweise in versagensrelevanten Bauteilbereichen ermöglicht. Gleichzeitig können die Darmstädter Wissenschaftlerinnen und Wissenschaftler aus der lastsynchronen Messung lokaler Dehnungsfelder Informationen über den lokal wirkenden Schädigungsmechanismus ableiten. Diese Informationen können zur Bauteiloptimierung genutzt werden.

Darüber hinaus lassen sie sich auch zur Steigerung der Werkstoffausnutzung durch Berücksichtigung des defektorientierten Werkstoffverhaltens bereits in frühen Auslegungsphasen nutzen. „Durch die Ableitung dedizierter Bemessungskonzepte und Untersuchungsmethoden wird dabei für additiv gefertigte Komponenten eine Anwendungssicherheit geschaffen, die mit derzeitig verfügbaren Regelwerken, welche sich allesamt an klassischen Herstellungstechnologien orientieren, nicht zu erreichen ist.“, betont Dr. Wagener.

Das Fraunhofer LBF bedankt sich beim Bundesministerium für Bildung und Forschung für die Förderung des Verbundprojektes „Betriebsfestigkeit additiv gefertigter Bauteile – BadgeB“, mit dem ein Teil des AM FATIGUE LABS realisiert werden konnte.

(Quelle: Presseinformation des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF)

Schlagworte

Additive FertigungAdditive ManufacturingBauteilgeometrieLeichtbauSimulation

Verwandte Artikel

Ganz nah dran: Pulverdüse des Fraunhofer ILT zum Laserauftragschweißen in der Schutzgaszelle der ProLMD-Anlage bei KUKA in Würselen.
25.10.2020

Hybrid-additive Fertigung von Großbauteilen mit Laserauftragschweißen

Im BMBF-Förderprojekt „ProLMD“ entstanden neue Hybrid-Prozesse, die konventionelle Fertigungsverfahren mit Laserauftragschweißen und drei Robotern zu einem neuen Fertigun...

3D-Druck Additive Fertigung Additive Manufacturing Automation Digitalisierung Drahtschweißen Laserauftragschweißen Pulverschweißen Robotik
Mehr erfahren
Loctite 3D IND405 Clear Teile, die mit dem Carbon DLS Prozess gedruckt wurden.
21.10.2020

Hochleistungsfähige Lösungen in der additiven Fertigung

Henkel und Carbon kombinieren ihre Material- und Druckexpertise für hochleistungsfähige Lösungen in der additiven Fertigung. Die Erweiterung ihrer Partnerschaft zielt dar...

3D-Druck Additive Fertigung Additive Manufacturing Automobilbau Luftfahrt
Mehr erfahren
15.10.2020

Ausgezeichneter „Möglichmacher“ für den Leichtbau

Mit dem ThinKing Award wird im Oktober 2020 ein „Möglichmacher“ für den Leichtbau ausgezeichnet, eine additiv gefertigte Aufnahme- und Spann-vorrichtung für das Laserschw...

Additive Fertigung Blechverarbeitung Laserschweißen Leichtbau
Mehr erfahren
Artungleiche Schweißverbindung zwischen einem pressgehärteten, martensitischen Chromstahl (oben, 0,9 mm dick) und einem Hochmanganstahl (unten, 1,2 mm dick).
13.10.2020

Laserstrahl-Schweißverfahren für martensitische Chromstähle

Martensitische Chromstähle dienen dem Fraunhofer-Institut für Lasertechnik ILT als Demonstrationsbauteile beim Schweißen und der Wärmebehandlung mit dem Laser.

Chromstahl Elektromobilität Fahrzeugbau Fügetechnik Laserstrahlschweißen Leichtbau Martensitische Chromstähle Wärmebehandlung
Mehr erfahren
Mut zur Unschärfe: Die Quantentechnologie (hier: eine parametrische Quelle für die Erzeugung verschränkter Photonen) gibt uns laut Professor Reinhart Poprawe „eine viel bessere Chance, die Wirklichkeit der Natur auch in unseren Modellen und Zugängen so zu beschreiben, wie sie wirklich ist - nämlich mit Unschärfe“.
11.10.2020

Sternstunden in Kalifornien: 60 Jahre Lasertechnologie

Vor 60 Jahren gab es den ersten funktionstüchtigen Laser. Wie technische Sternstunden in Kalifornien bei ihm gezündet haben, berichtet Professor Reinhart Poprawe, der ehe...

3D-Druck Additive Fertigung Biophotonik Fusionslaser Laserätzen Laserschneiden Lasertechnologien Produktionstechnik Quantentechnologie Tailored Light Ultrakurzpulslaser
Mehr erfahren