Forschung
3D-Druck eines Fraunhofer ILT-Schriftzuges aus drei verschiedenen Pulverwerkstoffen als Demonstrator-Bauteil für das neue, hochproduktive EHLA-3D-Verfahren. - © Fraunhofer ILT, Aachen.
30.10.2021

EHLA 3D: Eroberung der dritten Dimension

EHLA 3D: Eroberung der dritten Dimension

Das am Fraunhofer-Institut für Lasertechnik ILT entwickelte Extreme Hochgeschwindigkeits-Laserauftragschweißen EHLA gilt als effiziente und umweltfreundliche Alternative zu den herkömmlichen Beschichtungsverfahren. Wesentliche Vorteile bringt es vor allem dort, wo metallische Bauteile extrem beansprucht und deshalb durch Beschichtung vor Korrosion und Verschleiß geschützt werden sollen. Zusammen mit der Ponticon GmbH arbeiten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer ILT unter der Bezeichnung EHLA 3D nun daran, das patentierte Verfahren für die additive Fertigung weiterzuentwickeln und damit die Möglichkeiten des Verfahrens um ein Vielfaches zu erweitern.

Metallische Bauteile sind häufig extremen Bedingungen ausgesetzt. Zum Beispiel beim Einsatz in der Luft- und Raumfahrt, auf Ölbohrplattformen im Meer, in Form von Papierwalzen, Hydraulikzylindern oder als Bremsscheiben in Autos. Spezielle Beschichtungen sollen die Werkstoffe deshalb vor Korrosion und schnellem Verschleiß bewahren. Mit dem technologischen Fortschritt jedoch steigen die Anforderungen auf dem internationalen Markt stetig. Die Nachfrage ist infolgedessen zunehmend gekennzeichnet vom Bedarf nach noch schnelleren Produktionszeiten, individuellen und hoch performanten Bauteilen sowie einem enorm hohen Preisdruck.

Keines der herkömmlichen Verfahren jedoch genügt diesen Standards noch. Sie sind weder ausreichend flexibel, ressourceneffizient noch wirtschaftlich genug, um schmelzmetallurgisch angebundene, dünne Schichten mit hoher Qualität auf Bauteil-Oberflächen aufzutragen. Das Hartverchromen, bis vor nicht allzu langer Zeit das gängigste Verfahren, wird von der EU seit September 2017 nur noch unter strengen Auflagen zugelassen. Denn die elektrochemische Abscheidung von giftigem Chrom (VI) schädigt die Umwelt nachhaltig. Um diese Lücke zu schließen, haben Wissenschaftlerinnen und Wissenschaftler des Fraunhofer ILT deshalb ein alternatives Beschichtungsverfahren entwickelt: das Extreme Hochgeschwindigkeits-Laserauftragschweißen EHLA. Seit 2015 kommt es insbesondere für Beschichtungen zum industriellen Einsatz, jetzt erfolgt für EHLA der Schritt in die dritte Dimension.

Die perfekte Grundlage

EHLA punktet im Vergleich zu den herkömmlichen Verfahren in mehrfacher Hinsicht. Nicht umsonst gewannen Wissenschaftler des Fraunhofer ILT dafür 2017 den renommierten Joseph-von-Fraunhofer-Preis. Das von ihnen entwickelte Verfahren verbessert die Vorschubgeschwindigkeit, mit der die Oberfläche bearbeitet wird, im Vergleich zum klassischen Laserauftragschweißen von 0,5 bis 2 Meter pro Minute auf 50 bis 500 Meter pro Minute. Ein Bauteil lässt sich heute also 100- bis 250-mal schneller beschichten. Auch ist es möglich, wesentlich dünnere Schichten aufzutragen. Waren durch konventionelles Laserauftragschweißen Schichten von mindestens 500 Mikrometer Stand der Technik, sind jetzt minimal 25 Mikrometer möglich.

Ein weiterer Vorteil liegt im geringen Wärmeeintrag. Beim klassischen Laserauftrag-schweißen wird der pulverförmige Zusatzwerkstoff in einem verhältnismäßig großen Schmelzbad direkt auf der Bauteiloberfläche aufgeschmolzen, um sie zu beschichten. Das kann die Materialeigenschaften jedoch nachhaltig verändern und kostet eine Menge Energie. Nicht so bei EHLA. Hier werden die festen Pulverpartikel schon in der Luft vom Laser aufgeschmolzen. Sie erreichen die Bauteiloberfläche also bereits im flüssigen Zustand und müssen dort nicht unter hohem Energieaufwand weiter aufgeschmolzen werden. Die Wärmeeinflusszone verkleinert sich so auf fünf bis zehn Mikrometer, beträgt also im Vergleich zum Laserauftragschweißen lediglich noch ein Hundertstel. 

Außenansicht der pE3d-Tripodanlage der Ponticon GmbH im EHLA-3D-Labor des Fraunhofer ILT. - © Fraunhofer ILT, Aachen
Außenansicht der pE3d-Tripodanlage der Ponticon GmbH im EHLA-3D-Labor des Fraunhofer ILT. © Fraunhofer ILT, Aachen

So können jetzt auch metallurgisch inkompatible, hitzeempfindliche Werkstoffgruppen miteinander verbunden und verarbeitet werden, Aluminium und Titan zum Beispiel. Insgesamt wird die Bauteil-Oberfläche zudem wesentlich glatter: die Rauheit verringert sich etwa um den Faktor 10. Für die Expertinnen und Experten am Fraunhofer ILT bietet das eine perfekte Grundlage für weitere Entwicklungsschritte.

Neue Generation der Additiven Fertigung

„EHLA eignet sich im Prinzip für alles, was rotationssymmetrisch ist und auf einer schnellen Drehkinematik bearbeitet werden kann“, sagt Jonathan Schaible, wissen-schaftlicher Mitarbeiter am Fraunhofer ILT. „Die Frage ist nur: Warum sollten wir uns auf einfache runde Teile beschränken, wenn eine weitaus größere Bandbreite an Ein-satzmöglichkeiten denkbar ist?“

Aus diesem Grund arbeitet ein Team von Wissenschaftlern seit 2017 daran, eine neue Generation des Verfahrens zu entwickeln. Ihr Vorhaben: Die innovative Technologie für den 3D-Druck zu nutzen. Arbeitstitel: EHLA 3D. Schaibles Promotion darüber dürfte spannende Erkenntnisse zutage fördern. „Im Zentrum steht die Frage, welche speziel-len Anforderungen für Maschinen- und Systemtechnik zu erfüllen sind, um EHLA mit dem Highspeed-3D-Druck kombinieren zu können.“ EHLA 3D ermöglicht gleich mehrere einzigartige, verfahrenstechnische Vorteile: hohe Aufbauraten, große Flexibilität und Materialvielfalt und gleichzeitig eine hohe Präzision. „In naher Zukunft sollen selbst komplexe, filigrane Strukturen im großen Maßstab ein-fach und kostengünstig hergestellt werden können“, sagt Schaible. „Auch individualisierte Bauteile sind denkbar.“

Erste Projekte gestartet

Der erste Prototyp der Anlage ist bereits erfolgreich im Einsatz. Er wurde 2019 in Zusammenarbeit mit der Ponticon GmbH aus Wiesbaden fertiggestellt. Das Konzept dafür basiert auf dem kinematischen Prinzip des Tripoden, einer Konstruktion mit drei Linearmotoren, die über Koppelstangen mit der Bauplattform, auf der das zu bearbeitende Bauteil bewegt wird, verbunden sind. „Das funktioniert ähnlich wie bei der Transrapid-Schwebebahn“, erklärt Schaible. „Der spezielle Aufbau gleicht die Trägheitskräfte weitgehend aus. In unserem Fall kann die Bauplattform dadurch sehr schnelle und präzise Bewegungen ausführen, ohne dass dabei große Schwingungen auftreten.“ Inzwischen kann die Anlage so bis zu 25 Kilogramm schwere Bauteile bearbeiten – mit bis zu fünffacher Erdbeschleunigung und Geschwindigkeiten von bis zu 200 Metern pro Minute, bei zugleich sehr hoher Präzision von 100 Mikrometern. Beim herkömmli-chen Laserauftragschweißen sind gerade einmal 0,5 bis 2 Meter pro Minute üblich.

Die Tripod-Kinematik in Aktion: stationäre Pulverzufuhrdüse und bewegte Bauplattform zur Durchführung schneller und präziser Vorschubbewegungen. - © Fraunhofer ILT, Aachen
Die Tripod-Kinematik in Aktion: stationäre Pulverzufuhrdüse und bewegte Bauplattform zur Durchführung schneller und präziser Vorschubbewegungen. © Fraunhofer ILT, Aachen

„Um die Vorteile von EHLA 3D für einen großen Anwenderkreis im industriellen Umfeld nutzbar zu machen, werden am Fraunhofer ILT derzeit zielgerichtete Forschungsarbeiten durchgeführt“, sagt Schaible. „Auf dem Weg dorthin müssen wir die Komplexität beherrschbar machen.“ Zentral sind etwa Prozessüberwachungskonzepte und automatisierte Bahnplanungs-Tools, am wichtigsten bleibt zunächst die Parametervariation im Labor. Bei der Prozessentwicklung müssen alle Parameter exakt aufeinander abgestimmt werden: Geschwindigkeit, Laserleistung und Pulvermenge in Abhängigkeit von der jeweils verarbeiteten Werkstoff-Kombination. „Da gibt es noch eine Menge experimenteller und empirischer Vorarbeit zu leisten. Die ersten Interessenten aus der Industrie haben aber schon ihre Fühler ausgestreckt“, ist Schaible optimistisch. „Wir sind also genau auf dem richtigen Weg.“

Derzeit wird EHLA 3D bereits in einem Projekt des Industriekonsortiums ICTM Internati-onal Center for Turbomachinery Manufacturing unter Beteiligung zahlreicher namhafter Unternehmen aus den Bereichen Luftfahrt und Turbomaschinenbau weiter erforscht, ein Folgeprojekt ist für 2022 beantragt. Weitere bilaterale sowie öffentlich geförderte Konsortialprojekte und Machbarkeitsstudien sind in Planung. Die Bandbreite der Möglichkeiten für die Fertigung und Verarbeitung von Bauteilen wird mit EHLA 3D um ein Vielfaches erweitert, gleichzeitig effizienter und umweltverträglicher.

Vorträge zu diesem Thema

Erfahren Sie mehr auf der Onlinekonferenz ICAM 2021 – International Conference on Additive Manufacturing (ASTM International) vom 1.-5. November 2021 im Vortrag von Jonathan Schaible „Extreme High-Speed Laser Material Deposition for Additive Manufacturing“. Weitere Informationen: www.amcoe.org/icam2021

Auf dem AKL‘22 – International Laser Technology Congress, vom 4.-6. Mai 2022 in Aachen hält zudem Min-Uh Ko, Gruppenleiter Systemtechnik am Fraunhofer ILT, einen Vortrag zum Thema „Extreme High-Speed Laser Material Deposition for Additive Manufacturing“. Weitere Informationen: www.lasercongress.org

(Quelle: Presseinfomation des Fraunhofer-Instituts für Lasertechnik ILT)

Schlagworte

3D-DruckAdditive FertigungBeschichtenEHLALaserauftragsschweißenLasertechnologienSchweißen

Verwandte Artikel

15.04.2024

Innovationsfähigkeit entscheidet im Maschinenbau über Produktivitätssteigerungen

Maschinen- und Anlagenbauer weltweit können ihre Produktivität um 30 bis 50 Prozent steigern, indem sie Innovationen in den Bereichen künstliche Intelligenz (KI), Lean so...

Additive Fertigung Anlagenbau Digitalisierung Industrie 4.0 Informationstechnologie Innovationsfähigkeit KI Maschinenbau Nachhaltigkeit Operative Technologie Produktivität
Mehr erfahren
Erfolgreicher Start einer Ariane 5.
09.04.2024

Fertigungstechnologien für die Zukunft  der europäischen Raumfahrt

Um die Wettbewerbsfähigkeit europäischer Raumtransportsysteme zu steigern, entwickeln Forschende des Fraunhofer ILT zukunftsweisende Fertigungstechnologien für Raketenkom...

Laser Powder Bed Fusion Laserauftragschweißen Lasertechnik Lasertechnologien Raumfahrt Raumtransportsysteme WAAM
Mehr erfahren
Die Laser-induced Breakdown Spectroscopy LIBS detektiert wertvolle Legierungen in Metallschrott, den Roboter sortenrein trennen. Das Verfahren schafft die Grundlage für geschlossene Stoffkreisläufe ohne Downcycling.
02.04.2024

Lasertechnik und KI beflügeln die Kreislaufwirtschaft

Die Recyclingbranche setzt zunehmend auf die Laser-Emissionsspektroskopie (LIBS), um wiederverwendbare Rohstoffe in Abfallströmen zu identifizieren. Das Fraunhofer-Instit...

Circular Economy KI Kreislaufwirtschaft Laser-Emissionsspektroskopie Lasertechnologien Recycling
Mehr erfahren
29.03.2024

Weitere Branchenführer bestätigen Teilnahme an SCHWEISSEN & SCHNEIDEN 2025

Die SCHWEISSEN & SCHNEIDEN findet 2025 mit weiteren Branchengrößen statt. Nun haben auch CLOOS, KUKA und Air Liquide ihre Teilnahme bestätigt.

Beschichten Fügen Nachhaltigkeit Schneidtechnik SCHWEISSEN & SCHNEIDEN Schweißtechnik Trennen Weltleitmesse
Mehr erfahren
20.03.2024

Muffenschweißen für High-Tech-Gasflaschen

Ventilmuffen sind ein zentrales Element bei Gasflaschen. Bei ALUGAS werden täglich rund 1000 Muffen verschweißt – seit kurzem voll automatisiert. Zwei Motoman-Industriero...

Roboterschweißen Schweißen Schweißtechnik WIG Schweißen
Mehr erfahren