International
For the QWeld project, researchers created the first stable, adhesive-free, opti- cal bonding solution for PICs that could be used at temperatures as low as 4K. The focus was on vertical connections. - © Fraunhofer IZM
17.04.2025

Laser Welding Brought to Quantum Technology

Reliable fiber-PIC connections

Researchers at Fraunhofer IZM have developed a laser welding process that works without adhesives to connect Photonic Integrated Circuits (PICs) with optical fibers. Uniquely, the technology can be used at cryogenic temperatures down to a mere four Kelvin, 269.15 °C below zero. The direct quartz-to-quartz connections created by the technology promise more reliable, faster and cheaper fiber-PIC-connections that will revolutionize quantum technology applications.

Low temperatures are needed to observe quantum effects in action. These can have a real impact on the quality of life, as big-data use cases like personalized medicine or many other medical data applications can only be handled by quantum computing. Lots of attention and effort is currently going into the development of cryogenic quantum computing systems. Quantum technology systems with implemented PIC-based modules promise a more compact solution for safe communication and connections in quantum computing, but photonic systems like these need reliable glass fiber connections. The technology will benefit other areas from biophotonics to sensor technology.

As part of the QWeld project, researchers at Fraunhofer IZM have come up with a novel laser welding technology for vertical optical connections. It uses the prototype PICWeld processing unit assembled and installed at the Institute during a previous research project. The facilities made it possible for the first time to form a direct laser-welded connection between glass fiber and silica-glass PICs, which is more durable and thermally robust than conventional adhesive connections. The work on the QWeld project is focused on taking this connection technology and bringing it over to applications in cryogenic environments. It employs PICs that were made with a standard CMOS process, but designed with one special feature: a silicon dioxide (SiO2) top layer that is needed for glass-on-glass laser welding. Uniquely, the fiber is connected vertically to the PIC, usually at a specific inclination. During welding, the laser hits the contact point between the PIC and the glass fiber on both sides and creates a material bond between both in only a few seconds, promising a major acceleration of the manufacturing process. Making this possible under the new conditions set for the project, primarily the combination of SiO2 materials and the exacting standards in terms of high-precision alignment meant that the entire process and the production system had to be refined and redeveloped, including the addition of a local preheater, added alignment features, and new sensors. The welded bond is durable and the process is reproducible and can be automated, making it possible to create PICs in the large numbers needed for quantum systems.

Dr. Alethea Vanessa Zamora Gómez, researcher at Fraunhofer IZM and coordinator of the project, celebrates the successful application of the technology for quantum photonics: „The novel laser welding process uses a CO2 laser to heat up a specific part of thePIC’s SiO2 layer to minimize the temperature difference between the fiber and the PIC during the actual welding. The innovative preheater technology is likely to solve all of the current challenge we encounter when bonding fibers to PICs at cryogenic temperatures. Since we can use CO2 lasers, the process can be automated, making it inexpensive and reliable and ultimately attractive for industrial use. “Dr. Zamora Gómez and process developer Marco Queisser have accomplished what they set out to do in the project: To find a new laser welding technology for fiber-to-PIC connections that will pave the way for new cooperation opportunities in cryotechnology and quantum PICs. They also expect more applications in biophotonics, sensor technology, and high-performance lasers.

The QWeld project was fully funded by the „Preliminary Research Projects for Photonics and Quantum Technology ‘Initiative of the Federal Ministry of Education and Research’”. As part of the „Quantum Technology – From the Fundamentals to the Market“ program, QWeld ran from 1 August 2022 to 31 December 2024, coordinated by Dr. Alethea Vanessa Zamora Gómez at Fraunhofer IZM.

(Source: Fraunhofer IZM Press Release)

Schlagworte

LaserLaser Beam WeldingWelding

Verwandte Artikel

12.02.2026

Reliable Quality Assurance for Arc Welding

Lessmüller Lasertechnik is expanding its range of solutions to include automated weld seam inspection for gas metal arc welding (GMAW).

GMAW Laser Laser Beam Welding Measuring Mechanical Engineering Metalworking Monitoring MSG Welding OCT Optical Coherence Tomography Rail Vehicle Construction Vehicle Construction Welding Welding Torch
Read more
12.02.2026

WorkSport Reshores Its US Production with Prima Power’s PSBB Line

Worksport transformed its vision for smarter, cleaner truck accessories by reshoring production to Buffalo, New York, with Prima Power’s PSBB line.

Bending Buffering Manufacturing Metal Work PSBB Punching Shearing Sheet Metal Welding
Read more
Marie Schafnitzl, authorized signatory at Evosys Laser GmbH, receives the “Top Innovator 2026” award
11.02.2026

Evosys Laser Awarded TOP 100 Seal

Evosys' nnovative strength has now been recognized for the fifth time with the prestigious TOP 100 seal for 2026.

Automation Automotive Award Joining Plastics Laser Laser Plastic Welding Processing SME Welding
Read more
06.02.2026

IIW 2026 Annual Assembly

Registration is now open for the 79th IIW Annual Assembly and International Conference on Welding and Joining, which will take place from July 12 through 17, 2026, in Sal...

Annual Assembly Austria DVS DVS e. V. IIW International Cooperation Joining Welding
Read more