Forschung
Neue Verbindungtechnologie mit 200 Nanometer dünnen Drähten als Lösung für leistungsstarke Elektronik der Zukunft. - © Fraunhofer IZM
19.01.2024

Neue Verbindungstechnologie mit Nanodrähten für High-Performance Elektronik

Neue Verbindungstechnologie mit Nanodrähten setzt Maßstäbe für High-Performance Elektronik

Der Platz wird eng auf elektronischen Chips: Hochleistungsfähige Elektronik erfordert immer mehr Verbindungen auf kleinstem Raum, bisherige Verfahren stoßen dabei jedoch an ihre Grenzen. Forschende vom Fraunhofer IZM-ASSID haben gemeinsam mit Partnern eine von der NanoWired GmbH patentierte Verbindungstechnologie weiterentwickelt, die auf Kontaktierungen im Nanometer-Maßstab abzielt. Zusätzlich zur Technologie demonstrieren sie, wie diese für die industrielle Fertigung auf 300 mm Wafern angewandt werden kann.

Für eine effiziente digitale Zukunft und technologische Souveränität erweisen sich Hoch- und Höchstleistungsrechner von enormer Bedeutung. Beim so genannten High Performance Computing (HPC) erfassen Rechenzentren riesige Datenmengen und führen damit komplexe Berechnungen durch. Zum Einsatz kommt HPC also immer dort, wo rechenintensive Operationen in Hochgeschwindigkeit erforderlich sind: Dies kommt besonders der Wissenschaft für das Erstellen aufwändiger Simulationen und Algorithmen zugute, aber auch bei der Optimierung von Verkehr, Logistik, Industrie oder Präzisionsmedizin finden die Superrechner bereits heute Anwendung. Dabei ist HPC nur eine von vielen zukunftsträchtigen Anwendungen, deren Grundlage Leistungsfähigkeit und Effizienz sind.

Um diese hohen Anforderungen zu erfüllen, sind neue Verbindungstechnologien entscheidend. Die Idee dahinter ist: Je kleiner der Pitch, also der Abstand zwischen elektronischen Kontaktpunkten, desto mehr Transistoren und Schaltkreise können auf einem Chip untergebracht werden, was wiederum zu einer höheren Leistungsfähigkeit führt. Bisher haben sich bei Flip-Chip-Anwendungen die Kupfer-Bumps mit Lot als Standardtechnologie erwiesen. Bei zunehmender Miniaturisierung stößt dieses Verfahren jedoch an seine Grenzen, da das Lotmaterial austreten und zu Kurzschlüssen führen kann.

Neue Verbindungtechnologie mit 200 Nanometer dünnen Drähten als Lösung für leistungsstarke Elektronik der Zukunft. - © Fraunhofer IZM
Neue Verbindungtechnologie mit 200 Nanometer dünnen Drähten als Lösung für leistungsstarke Elektronik der Zukunft. © Fraunhofer IZM

Um innovative Alternativen zu finden, forscht Jun.-Prof. Dr.-Ing. Iuliana Panchenko mit ihrem Team am Fraunhofer IZM-ASSID an neuen Verbindungstechnologien für kleine Kontaktierungen unter 10 Mikrometern. Im Rahmen des Fraunhofer-geförderten SME-Projekts „NanoInt“ entwickelte das Team gemeinsam mit Partner*innen aus Wissenschaft und Industrie eine vielversprechende Lösung mit Nanodrähten aus Kupfer und evaluierte das Verfahren erfolgreich für die Anwendung auf 300 Millimeter breiten Silizium-Wafern.

Im Vergleich zu anderen Ansätzen wie dem Löten mit Kupfer oder Lot Bumps, dem Hybrid- oder Kompressions-Bonden bietet die direkte Kupferverbindung mit Nanodrähten einige Vorteile. Diese Verbindungstechnologie toleriert dank des Steckprinzips (Nanodraht-zu-Nanodraht) mehr Höhenvariationen, benötigt keine weiteren Metalle, bietet mehr Designfreiheit und gewährleistet gute mechanische Festigkeit. Zudem kann die Kontaktierung schon unter Raumtemperatur und bei geringem Bonddruck realisiert werden. Dadurch ist die ressourcenschonende Technologie auch für Low-Temperature-Bonding und somit für temperaturempfindliche und dünne Chips geeignet.

In der ersten Projektphase lag der Fokus darauf, das Wachstum der Nanodrähte an den Verbindungstellen auf dem ganzen 300 mm Wafer so homogen wie möglich zu realisieren. Das Forschungsteam nutzte dafür Membranen, die mit feinen Poren versehen sind. Der Porendurchmesser ist entscheidend für die Dicke der Nanodrähte und kann zwischen 100 nm und 1 μm variiert werden. Um leitfähige und zuverlässige Verbindung zu erzeugen, musste die Porendichte vorab evaluiert werden. In einem galvanischen Prozess wachsen die Kupfer-Nanodrähte in den Poren der Membran. Durch Prozessoptimierungen wurde eine Variation der Nanodraht-Höhen von circa 20 Prozent auf dem gesamten Wafer erreicht. Zusätzlich hat das Forschungsteam eine Prozessabfolge entwickelt, mit der die Nanodrähte während der Ätzprozesse geschützt werden, so dass die leitfähige Kupfer-Keimschicht auf dem Wafer entfernt werden kann.

Neue Verbindungtechnologie mit 200 Nanometer dünnen Drähten als Lösung für leistungsstarke Elektronik der Zukunft. - © Fraunhofer IZM
Neue Verbindungtechnologie mit 200 Nanometer dünnen Drähten als Lösung für leistungsstarke Elektronik der Zukunft. © Fraunhofer IZM

Um die Verbindungstechnologie applikationsnah zu evaluieren, demonstrierten die Forschenden die Integration des Verfahrens in die industrielle Prozessierungskette. Hierfür wurden die optimalen Parameter für das weitere Assembly solcher Aufbauten identifiziert und unter besonderer Prüfung der Reproduzierbarkeit, Homogenität, mechanischer Festigkeit und Industrietauglichkeit umgesetzt.

Am Ende des Projekts demonstrierten die Partnerinnen und Partner einen 300 mm Silizium-Wafer mit gleichmäßigen Nanodrähten als Bumps und einen Chip-zu-Chip-Aufbau mit Nanodraht-Verbindungen. Damit zeigen sie die erfolgreiche Systemintegration für 2,5D und 3D-Aufbauten ohne den Einsatz von Flussmitteln. Im Ergebnis wird die Technologie bereits für die Industrie angeboten. In anstehenden Forschungsprojekten sollen die Kontakte sogar von 10 auf unter 5 Mikrometer schrumpfen. Perspektivisch lassen sich die Anwendungsbereiche der Nanodraht-Verbindungstechnologie ausweiten, so dass sie für komplexe Packages mit Fine-Pitch und großflächigen Kontakten einsetzbar wird.

Weitere Partner im Projekt NanoInt sind die NanoWired GmbH, das Fraunhofer IMWS und die IAVT der TU Dresden.

(Quelle: Presseinformation des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration IZM, Text: Olga Putsykina)

Schlagworte

ChipindustrieElektronikElektronikindustrieFügetechnikHochleistungselektronikNanodrähteVerbindungstechnik

Verwandte Artikel

18.11.2025

Neuer Erfahrungsaustausch zum handgeführten Laserstrahlschweißen

Das ifw Jena und der DVS laden alle Interessenten herzlich ein, an dem ersten Erfahrungsaustausch zum Thema handgeführtes Laserstrahlschweißen teilzunehmen.

Fügetechnik Handgeführtes Laserschweißen Laserstrahlschweißen Schweißen Veranstaltung
Mehr erfahren
14.11.2025

DVS CONGRESS 2026: Call for papers

Der DVS CONGRESS 2026 lädt Fachleute aus Forschung, Industrie sowie engagierte Nachwuchskräfte zur aktiven Mitgestaltung seines Fachprogramms ein.

Beschichtungstechnik Digitalisierung Forschung Fügetechnik Hochleistungswerkstoffe Industrie Kongress Schneiden Schweißen Stahlbau Tagung Trenntechnik
Mehr erfahren
27.10.2025

Großer Erfolg: Blechexpo/Schweisstec 2025

Vom 21. bis 24. Oktober 2025 fand die 17. Blechexpo, internationale Fachmesse für Blechbearbeitung, zusammen mit der 10. Schweisstec, internationale Fachmesse für Fügete...

Automatisierung Biegen Biegetechnik Blechbearbeitung Fügen Fügetechnik Messe Schweißen Stanzen Stanztechnik
Mehr erfahren
16.10.2025

High-Speed-Montage- und Fügetechnik trifft auf exakte Kraftmessung

Kistler kombiniert elektromagnetische Linearmodule mit piezoelektrischer Messtechnik für präzises Fügen bei hoher Dynamik

Antriebstechnik Arbeitsplatz Automobilindustrie Elektronikindustrie Fügetechnik Halbleiter KI Kunststoff MAG Messtechnik Montage Norm Prozessentwicklung Prozesssicherheit Prozesssteuerung Sensoren Sensorik TIG Werkzeug
Mehr erfahren
03.08.2025

Japans Autoindustrie: Roboter-Installationen auf höchstem Stand seit fünf Jahren

Die Automobilindustrie in Japan hat im Jahr 2024 insgesamt rund 13.000 Industrie-Roboter installiert. Das ist ein Anstieg um 11 % im Vergleich zum Vorjahr und markiert de...

Automobilindustrie Brennstoffzellen Elektronik EU Industrie-Roboter Roboter Robotik TIG Wasserstoff
Mehr erfahren