International
© bielomatik
25.02.2025

Non-Contact Welding Process for Thermoplastic Polymers

In the current issue of our trade technical journal JOINING PLASTICS/FÜGEN VON KUNSTSTOFFEN and in the archive you will find many other interesting articles. Feel free to browse.
Joining Plastics [EN]
Laser-based infrared welding

The laser-based infrared welding process further developed by bielomatik differs primarily in the energy source for infrared radiation. Instead of expensive and sensitive infrared tube radiators or metal foil ribbon emitters, a commercially available fiber laser system is used. This system operates in the infrared wave-length range of 1070 nm, Fig. 1. The fiber laser provides a top-hat beam profile, which is ideal for efficiently plasticizing welding ribs. Key technical advantages of laser-based infrared welding:

  1. Maximum flexibility: Using a laser source and a scanner, energy can be transferred almost simultaneously to any geometry.
  2. Reduced investment costs: Tool-investment is reduced by up to 70 %, as the laser-scanner unit serves as a programmable IR emitter that needs to be procured only once.
  3. Increased precision: The laser beam enables highly precise and localized heat input. Complex areas such as T-joints or ring welds can be welded with high accuracy and tight sealing.
  4. More efficient energy transfer: The laser focuses energy directly and specifically on the welding points, reducing energy consumption. This minimizes heat absorption by the components and prevents distortions caused by internal stress release.
  5. New application opportunities: In a joint development (by bielomatik, LZH and Coherent), a CO2 laser was controlled to allow process-safe, flexible and gentle welding of IR-transparent components. For example, a taillight with a housing made of ABS/PC and a lens made of PMMA (Fig. 4).
Targeted energy transfer

The laser-based infrared welding process offers numerous advantages through its precise energy transfer and high precision:

  • Prevention of thermal material damage: The precise focusing of the laser allows controlled and efficient energy delivery to the weld zone, significantly reducing energy consumption.„
  • Cost-effectiveness and environmental friendliness: The process enables exact control of energy input, tailored to material and geometry, resulting in optimal welding outcomes.
  • Low thermal stress: Heat generation is confined exclusively to the weld zone. The rest of the component remains cool and intact, which is particularly advantageous for temperature-sensitive components.
  • „Shorter commissioning and parameter setting: The programmable IR emitter enables precise, reproducible and transferable parameterization of project data, saving significant time during commissioning and implementation in production processes. This makes it particularly suitable for series production.
Conclusion

The laser-based infrared welding process developed by bielomatik offers significant improvements in precision, efficiency, and material versatility. The process is cost-efficient, sustainable and highly flexible. This technology not only opens new application possibilities, such as in lighting manufacturing, but also provides a very economical alternative to
conventional infrared welding techniques. By combining the advantages of laser scanner systems with the economic and ecological benefits of infrared welding, this process is well-suited for a wide range of production applications, from automo-tive to medical technology. 

(Source: Beatrice Maus, bielomatik)

Schlagworte

EnvironmentInfraredJoining PlasticsLaserPolymerWelding

Verwandte Artikel

07.01.2026

SKZ and IPSI: Train the Trainer Programme in Indonesia

The SKZ Plastics Center will support PT Impack Pratama Industri Tbk (IMPC) in Indonesia in establishing the Impack Polymer Science Institute (IPSI).

Education Industry Joining Plastics Plastics SME Talent Training
Read more
05.01.2026

Industrial Spring 2026

From 24 through 27 March 2026, Targi Kielce will bring together companies from Poland and abroad for metalworking, automation and tooling technologies.

Additive Manufacuring AI AM Automation Coating Cutting Event Laser Metalworking Robotics Sheet Metal Surfacing Technologies Tools Trade Fair Welding
Read more
05.01.2026

Der Schweißdraht als Sensor

Mit der Weiterentwicklung von WireSense hat Fronius International den Funktionsumfang seines Roboterassistenzsystems erweitert. Das System wird seit mehreren Jahren in de...

Aluminium AM AR Automobilindustrie Bauteilgeometrie Beton Blech Chrom CMT DIN Draht Edelstahl Eichung Elektrode EU EV Fertigung Fertigungsprozesse Formen Fronius Landmaschinen Landmaschinenindustrie Laser Lasersysteme Legierungen Licht Maschine Maschinen Maschinenindustrie Metall Metallverarbeitung Nickel PU Roboter Robotersysteme Schweißdraht Stahl Stromquelle TIG Werkstoffe
Mehr erfahren
Fig. 2. Influence of the shielding gas circulation speed on the process temperature.
17.12.2025

High-Resolution Temperature Field-Based Process Control for Laser Powder Bed Fusion

This research paper was previously published in the German specialist magazin SCHWEISSEN UND SCHNEIDEN.

Additive Manufacturing AM Laser Powder Bed Fusion LPBF PBF-LB/M Welding
Read more
Giga Laser Next with input and output racks on opposite sides
16.12.2025

Prima Power wins “Best Award 2025” at Blechexpo

Prima Power, provider in sheet metal working manufacturing solutions, announces that its new Giga Laser Next 3D laser machine has won the Best Award 2025 in the Sheet Met...

3D Award Best Award 2025 Blechexpo Laser Laser Processing Sheet Metal
Read more