International
© bielomatik
25.02.2025

Non-Contact Welding Process for Thermoplastic Polymers

In the current issue of our trade technical journal JOINING PLASTICS/FÜGEN VON KUNSTSTOFFEN and in the archive you will find many other interesting articles. Feel free to browse.
Joining Plastics [EN]
Laser-based infrared welding

The laser-based infrared welding process further developed by bielomatik differs primarily in the energy source for infrared radiation. Instead of expensive and sensitive infrared tube radiators or metal foil ribbon emitters, a commercially available fiber laser system is used. This system operates in the infrared wave-length range of 1070 nm, Fig. 1. The fiber laser provides a top-hat beam profile, which is ideal for efficiently plasticizing welding ribs. Key technical advantages of laser-based infrared welding:

  1. Maximum flexibility: Using a laser source and a scanner, energy can be transferred almost simultaneously to any geometry.
  2. Reduced investment costs: Tool-investment is reduced by up to 70 %, as the laser-scanner unit serves as a programmable IR emitter that needs to be procured only once.
  3. Increased precision: The laser beam enables highly precise and localized heat input. Complex areas such as T-joints or ring welds can be welded with high accuracy and tight sealing.
  4. More efficient energy transfer: The laser focuses energy directly and specifically on the welding points, reducing energy consumption. This minimizes heat absorption by the components and prevents distortions caused by internal stress release.
  5. New application opportunities: In a joint development (by bielomatik, LZH and Coherent), a CO2 laser was controlled to allow process-safe, flexible and gentle welding of IR-transparent components. For example, a taillight with a housing made of ABS/PC and a lens made of PMMA (Fig. 4).
Targeted energy transfer

The laser-based infrared welding process offers numerous advantages through its precise energy transfer and high precision:

  • Prevention of thermal material damage: The precise focusing of the laser allows controlled and efficient energy delivery to the weld zone, significantly reducing energy consumption.„
  • Cost-effectiveness and environmental friendliness: The process enables exact control of energy input, tailored to material and geometry, resulting in optimal welding outcomes.
  • Low thermal stress: Heat generation is confined exclusively to the weld zone. The rest of the component remains cool and intact, which is particularly advantageous for temperature-sensitive components.
  • „Shorter commissioning and parameter setting: The programmable IR emitter enables precise, reproducible and transferable parameterization of project data, saving significant time during commissioning and implementation in production processes. This makes it particularly suitable for series production.
Conclusion

The laser-based infrared welding process developed by bielomatik offers significant improvements in precision, efficiency, and material versatility. The process is cost-efficient, sustainable and highly flexible. This technology not only opens new application possibilities, such as in lighting manufacturing, but also provides a very economical alternative to
conventional infrared welding techniques. By combining the advantages of laser scanner systems with the economic and ecological benefits of infrared welding, this process is well-suited for a wide range of production applications, from automo-tive to medical technology. 

(Source: Beatrice Maus, bielomatik)

Schlagworte

EnvironmentInfraredJoining PlasticsLaserPolymerWelding

Verwandte Artikel

25.03.2025

New office for the Benelux region

Plasmatreat continues to grow and opens a new office for the Benelux region. Also, Job van Galen takes over the management of the newly founded subsidiary in Eindhoven, t...

Aerospace AM Applications Automotive Bonding Coating Composites Electronics Energy Engineering Environment EU Import Industrie Industry Infrastructure Manufacturing Metal Plasma Plastic Plastics Production Research Surface Treatment Technologie
Read more
21.03.2025

Dr. Jochen Stollenwerk übernimmt kommissarische Leitung des Fraunhofer ILT

Am 17. Februar 2025 übernahm Dr. Jochen Stollenwerk kommissarisch die Leitung des Fraunhofer ILT. Er tritt somit die Nachfolge von Prof. Constantin Häfner an.

Additive Fertigung Digitalisierung Forschung Industrie Innovationskraft Laser Lasermaterialbearbeitung Lasertechnik Materialbearbeitung Photonik Photonik-Industrie Technologie
Mehr erfahren
Ajediu PEEK spiral-wound slot liner EVTubes
20.03.2025

Syensqo announces strategic partnership with Politubes

Syensqo, a leader in specialty polymers, and Politubes, a renowned manufacturer of flexible multi-layered spiral-wound tubes and insulator caps components, have announced...

AI Automotive Battery Copper Electric Vehicles Polymer Polymers PPE Vehicles
Read more
19.03.2025

New fields of application for flexible OCT edge tracking

Blackbird Robotersysteme GmbH, manufacturer of system solutions for remote laser welding, has significantly advanced its award-winning solution for OCT edge tracking.

AI AM Automation KI Laser Laser Welding OCT Robot Roboter Robotersysteme Software Welding
Read more
18.03.2025

Trade Fair in South East Europe: METAL SHOW & TIB 2025

From 13 to 16 May 2025, METAL SHOW & TIB 2025 will take place in Romania's largest exhibition hall for the metalworking industry and the equipment and technology sector.

Automation Cutting Exhibition Industry International Metal Metal Processing Robotics Technology Welding
Read more