Trendthema
Mit einer vielversprechenden Kombination aus Kathode und Elektrolyt wollen die Forscherinnen und Forscher des HIU eine sehr hohe Energiedichte möglich machen. - © Amadeus Bramsiepe, KIT
14.08.2021

Rekordverdächtige Lithium-Metall-Batterie

Rekordverdächtige Lithium-Metall-Batterie

Eine extrem hohe Energiedichte von 560 Wattstunden pro Kilogramm bei bemerkenswert guter Stabilität bietet eine neuartige Lithium-Metall-Batterie. Dafür haben Forschende am vom Karlsruher Institut für Technologie (KIT) in Kooperation mit der Universität Ulm gegründeten Helmholtz-Institut Ulm (HIU) eine vielversprechende Kombination aus Kathode und Elektrolyt eingesetzt: Die nickelreiche Kathode erlaubt, viel Energie pro Masse zu speichern, der ionische Flüssigelektrolyt sorgt dafür, dass die Kapazität über viele Ladezyklen weitestgehend erhalten bleibt. Über die rekordverdächtige Lithium-Metall-Batterie berichtet das Team im Magazin Joule.

Derzeit stellen Lithium-Ionen-Batterien die gängigste Lösung für die mobile Stromversorgung dar. Die Technologie stößt jedoch bei manchen Anforderungen an ihre Grenzen. Dies gilt besonders für die Elektromobilität, bei der leichte, kompakte Fahrzeuge mit hohen Reichweiten gefragt sind. Als Alternative bieten sich Lithium-Metall-Batterien an: Sie zeichnen sich durch eine hohe Energiedichte aus, das heißt, sie speichern viel Energie pro Masse bzw. Volumen. Doch ihre Stabilität stellt eine Herausforderung dar – weil die Elektrodenmaterialien mit gewöhnlichen Elektrolytsystemen reagieren.

Eine Lösung haben nun Forschende am Karlsruher Institut für Technologie (KIT) und am Helmholtz-Institut Ulm – Elektrochemische Energiespeicherung (HIU) gefunden. Wie sie im Magazin Joule berichten, setzen sie eine vielversprechende neue Materialkombination ein. Sie verwenden eine kobaltarme, nickelreiche Schichtkathode (NCM88). Diese bietet eine hohe Energiedichte. Mit dem üblicherweise verwendeten kommerziell erhältlichen organischen Elektrolyten (LP30) lässt die Stabilität allerdings stark zu wünschen übrig. Die Speicherkapazität sinkt mit steigender Zahl der Ladezyklen. Warum das so ist, erklärt Professor Stefano Passerini, Direktor des HIU und Leiter der Forschungsgruppe Elektrochemie der Batterien: „Im Elektrolyten LP30 entstehen Partikelrisse an der Kathode. Innerhalb dieser Risse reagiert der Elektrolyt und zerstört die Struktur. Zudem bildet sich eine dicke moosartige lithiumhaltige Schicht auf der Kathode.“

Die Forschenden verwendeten daher stattdessen einen schwerflüchtigen, nicht entflammbaren ionischen Flüssigelektrolyten mit zwei Anionen (ILE). „Mithilfe des ILE lassen sich die Strukturveränderungen an der nickelreichen Kathode wesentlich eindämmen“, berichtet Dr. Guk-Tae Kim von der Forschungsgruppe Elektrochemie der Batterien am HIU.

Mit dem ionischen Flüssigelektrolyten ILE (rechts) lassen sich Strukturveränderungen an der nickelreichen Kathode NCM88 weitgehend vermeiden; die Kapazität der Batterie bleibt über 1 000 Ladezyklen zu 88 Prozent erhalten. - © Fanglin Wu und Dr. Matthias Künzel, KIT/HIU
Mit dem ionischen Flüssigelektrolyten ILE (rechts) lassen sich Strukturveränderungen an der nickelreichen Kathode NCM88 weitgehend vermeiden; die Kapazität der Batterie bleibt über 1 000 Ladezyklen zu 88 Prozent erhalten. © Fanglin Wu und Dr. Matthias Künzel, KIT/HIU
Kapazität über 1 000 Ladezyklen zu 88 Prozent erhalten

Die Ergebnisse: Die Lithium-Metall-Batterie erreicht mit der Kathode NCM88 und dem Elektrolyten ILE eine Energiedichte von 560 Wattstunden pro Kilogramm (Wh/kg). Sie weist anfänglich eine Speicherkapazität von 214 Milliamperestunden pro Gramm (mAh/g) auf; über 1.000 Ladezyklen bleibt die Kapazität zu 88 Prozent erhalten. Die Coulomb-Effizienz, die das Verhältnis zwischen entnommener und zugeführter Kapazität angibt, beträgt durchschnittlich 99,94 Prozent. Da sich die vorgestellte Batterie auch durch eine hohe Sicherheit auszeichnet, ist den Forschenden aus Karlsruhe und Ulm damit ein wesentlicher Schritt auf dem Weg zur kohlenstoffneutralen Mobilität gelungen.

Originalpublikation (Open Access):

Fanglin Wu, Shan Fang, Matthias Kuenzel, Angelo Mullaliu, Jae-Kwang Kim, Xinpei Gao, Thomas Diemant, Guk-Tae Kim, and Stefano Passerini: Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule. Cell Press, 2021.

Publikation ansehen

Über das Helmholtz-Institut Ulm

Das Helmholtz-Institut Ulm (HIU) wurde im Januar 2011 vom Karlsruher Institut für Technologie (KIT) als Mitglied der Helmholtz-Gemeinschaft in Kooperation mit der Universität Ulm gegründet. Mit dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) sowie dem Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) sind zwei weitere renommierte Einrichtungen als assoziierte Partner in das HIU eingebunden. Das internationale Team aus rund 130 Wissenschaftlerinnen und Wissenschaftlern forscht im HIU an der Weiterentwicklung der Grundlagen von zukunftsfähigen Energiespeichern für den stationären und mobilen Einsatz.

 

Schlagworte

BatteriezellenElektromobilitätLithium

Verwandte Artikel

15.09.2021

Automobilzulieferer setzt auf Technologie-Know-how von KUKA

Seit 2017 werden bei MAGNA Presstec die Rahmen der Mercedes G-Klasse dank einer KUKA-Produktionslinie vollautomatisch gefertigt. Für eine neue Produktionsanlage für die e...

Automation Automobilindustrie Elektromobilität Roboterschweißen Robotik Schutzgasschweißen Schweißtechnik
Mehr erfahren
12.09.2021

437 Millionen Euro für nachhaltige Batteriezellfertigung in Kaiserslautern

Der Opel-Standort Kaiserslautern hat einen Zuwendungsbescheid für eine große Batteriezellfabrik erhalten, die dort entstehen soll.

Automobilbau Batteriezellen E-Mobilität Klimaschutz Produktion
Mehr erfahren
06.09.2021

Automobilbranche braucht moderne Fertigungskapazitäten

Die Automobilbranche steht vor massiven Herausforderungen. Während sich die deutschen Hersteller jahrelang an herkömmlichen Technologien orientiert haben, haben vor allem...

Automobilindustrie Elektromobilität Innovationen
Mehr erfahren
04.09.2021

Feststoffbatterie soll Sprung in die industrielle Anwendung gelingen

Das Forschungsprojekt „SoLiS“ zielt darauf ab, ein vielversprechendes Batteriekonzept aus der Grundlagenforschung in die industrielle Anwendung zu überführen. Dank hoher...

Batteriezellen Werkstoffe
Mehr erfahren
31.08.2021

Neue Zelle für das Rührreibschweißen erweitert Auftragsfertigung bei KUKA

KUKA bietet die Auftragsfertigung für Sonderschweißprozesse in jeder Losgröße an und baut den Bereich in Augsburg nun mit einer Zelle für das Rührreibschweißen aus.

Aluminiumlegierungen Elektromobilität Kupferlegierungen Luftfahrt Raumfahrt Rührreibschweißen Schweißtechnik
Mehr erfahren