Forschung
Induktives Erwärmen von Stahlwerkstoffen vor und nach der Schweißung wird zunehmen eingesetzt. Um schneller, material- und energiesparender zu den gewünschten Ergebnissen zu kommen, hat TIME im SindE-Projekt – gefördert vom europäischen EFRE-Programm – das entsprechende Simulationsmodell erarbeitet und eine äquivalente Wärmequelle entwickelt. - © TIME
18.06.2022

Induktive Wärme spart Energie, ist sauberer und besser automatisierbar

Induktive Wärme spart Energie, ist sauberer und besser automatisierbar

TIME, das Technologie-Institut für Metall und Engineering, hat sein Simulationsangebot rund um die moderne Schweißtechnik in einem aktuellen von EU und Land geförderten Projekt um die induktive Erwärmung erweitert. Als Ergebnis der elektromagnetischen Simulationen und Validierungsversuche hat das Expertenteam aus Wissen unter anderem eine äquivalente Wärmequelle entwickelt, mit der Simulationen zukünftig schneller durchgeführt werden können.

Moderne Stahlwerkstoffe müssen häufig vor dem Schweißen vorgewärmt werden, damit ihre Schweißbarkeit gewährleistet werden kann. Andererseits müssen viele geschweißte Bauteile nach dem Schweißen wärmebehandelt und gerichtet werden. Die Erwärmung von Schweißbauteilen mittels Induktion gilt dafür im Vergleich zur herkömmlichen Autogentechnik als geeignete Alternative. Denn die Vorteile des Verfahrens liegen in der schnellen und örtlich begrenzten Erwärmung des Werkstücks sowie in flammfreien, risikoarmen sowie sauberen Arbeitsabläufen und der Energieeinsparung.

Um die induktive Wärmewirkung besser abschätzen und das Prozessverständnis erhöhen zu können, verwendet TIME gekoppelte elektromagnetische und thermische Simulationen. Die Wechselwirkungen der elektrischen und magnetischen Felder sind dabei entscheidend für die Ausbildung der Leistungsdichten und die daraus resultierenden Temperaturen im Werkstück. Mithilfe von äquivalenten Wärmequellen in Kombination mit Validierungsversuchen und Werkstoffsimulationen konnten die TIME-Experten den Berechnungsaufwand gegenüber gekoppelten Simulationen deutlich beschleunigen. Dank dieser Simulationen können schweißtechnische Unternehmen kostenintensive Versuchsaufbauten reduzieren, dabei weniger Material verbrauchen und schneller zum Ziel kommen. Insgesamt ist der Aufwand transparenter plan- und gestaltbar.

Ressourceneinsparung durch Digitalisierung der Fertigung

Im Rahmen des Projekts SindE (die Abkürzung steht für: Simulation des induktiven Erwärmens) wurden sowohl Erwärmungsversuche mit einem Induktionsheizgerät, welches von der Fa. Technolit zur Verfügung gestellt wurde, als auch eine Vielzahl an Simulationen durchgeführt. Diese umfassten sowohl Werkstoffsimulationen mit der Software „JMatPro General Steels“ zur Ermittlung von temperaturabhängigen Werkstoffkennwerten als auch elektromagnetisch-thermisch gekoppelte Simulationen zur näherungsweisen Berechnung von Leistungsdichten, Temperaturfeldern und Wärmeströmen. Gestützt wurden die simulativen Untersuchungen durch die zeitabhängige Messung von elektrischen Prozessgrößen und Temperaturen in Erwärmungsversuchen.

Induktives Erwärmen von Stahlwerkstoffen vor und nach der Schweißung wird zunehmen eingesetzt. Um schneller, material- und energiesparender zu den gewünschten Ergebnissen zu kommen, hat TIME im SindE-Projekt – gefördert vom europäischen EFRE-Programm – das entsprechende Simulationsmodell erarbeitet und eine äquivalente Wärmequelle entwickelt. - © TIME
Induktives Erwärmen von Stahlwerkstoffen vor und nach der Schweißung wird zunehmen eingesetzt. Um schneller, material- und energiesparender zu den gewünschten Ergebnissen zu kommen, hat TIME im SindE-Projekt – gefördert vom europäischen EFRE-Programm – das entsprechende Simulationsmodell erarbeitet und eine äquivalente Wärmequelle entwickelt. © TIME

Die Auswertung der elektromagnetischen Berechnungen zeigte richtungsabhängig charakteristische Formen der Leistungsdichte im Werkstück auf. Unter der Annahme, dass die Leistungsdichte mit zunehmender Temperatur im Bauteil abnimmt, modellierte TIME den Wärmeeintrag in Abhängigkeit von elektromagnetischen Größen und der Temperatur. Mit dem Einsatz äquivalenter Wärmequellen gelingt es, den Berechnungsaufwand zur Berücksichtigung der Einflussgrößen, wie z.B. die Geometrie des Induktors oder der Werkstoff des magnetischen Feldverstärkers, drastisch zu reduzieren.

Äquivalente Wärmequelle kalibrieren

In Folge der induktiven Verluste und der Wirbelstromverluste entstehen hohe Heizraten in den umgebenden Werkstückoberflächen. Bei der Simulation der induktiven Erwärmung darf daher der Einfluss elektrischer und magnetischer Felder unter Änderung der Temperatur nicht vernachlässigt werden. Mithilfe äquivalenter Wärmequellen, welche die elektromagnetischen Werkstoffkennwerte berücksichtigen, kann mit der FEM-basierten Simulation der Erwärmungsprozess bereits in der Entwicklungsabteilung geplant und die entstehenden Temperaturen mit guter Genauigkeit prognostiziert werden.

„Mit der Anwendung von Simulationstechniken können wir die physikalischen Zusammenhänge der Induktionserwärmung veranschaulichen und die Praxis nachbilden“, erklärt TIME-Projektleiter Tobias Girresser. „Sie sind ein Baustein zur besseren Automatisierung von Schweißprozessen und reduzieren den CO2-Ausstoß.“ Ein Grund, weswegen das Projekt von EFRE gefördert wird.

Kontakt:

TIME – Technologie-Institut für Metall & Engineering GmbH
Koblenzer Str. 43, 57537 Wissen
Tel. 02742 / 912727-0
Mail: info@TIME-RLP.de
Web: www.TIME-RLP.de

(Quelle: Presseinformation der TIME – Technologie-Institut für Metall & Engineering GmbH)

Schlagworte

Induktive WärmeSchweißtechnikSimulationStähleVorwärmen

Verwandte Artikel

Dank geringem Gewicht und ergonomisch geformter Tragegriffe ist die Anlage leicht transportierbar.
16.09.2024

Flexibler schweißen mit der neuen MicorMIG mobile

Mit der neuen MicorMIG mobile in den Leistungsklassen 300 und 350 Ampere bietet Lorch jetzt eine Schweißanlage, die die Schweißpower der MicorMIG Serie mit einer kompakte...

MAG Schweißen MIG Schweißen Schweißen Schweißtechnik
Mehr erfahren
Die Cobots sind in der Lage, eine qualitativ hochwertige Schweißnaht zu erzeugen, deren Optik Möbelanwendungen gerecht wird. Zudem meistert der kollaborative GoFa-Schweißroboter komplexe Nahtkonfigurationen, enge Räume und schwierige Winkel, was selbst bei den anspruchsvollsten Anwendungen einwandfreie Schweißnähte erzielt.
13.09.2024

Überwindung von Kapazitätsengpässen mit ABB-Cobots

Der finnische Metallproduzent Lankapaja setzt zwei kollaborative GoFa™-Roboter von ABB zum Schweißen ein, um die wachsende Kundennachfrage bedienen zu können.

Cobot Schweißen Cobots Fachkräftemangel Metall-Inertgasschweißen MIG Schweißen Qualitätssicherung Schweißtechnik
Mehr erfahren
09.09.2024

Schutz vor Schweißrauch und Qualität vereint

Schweißrauch stellt eine erhebliche Gesundheitsgefahr für Schweißer dar. ENGMAR präsentiert auf der EuroBLECH in Halle 26, Stand G21 innovative Lösungen zur Absaugung von...

Absaugbrenner Arbeitsschutz Arbeitssicherheit Gesundheitsschutz Qualität Schweißen Schweißrauch Schweißrauchabsaugung Schweißtechnik TRGS 528
Mehr erfahren
07.09.2024

Best Practice: Einstieg in das maschinelle Lernen

Vortrainierte neuronale Netze, auf denen Anwendungen wie ChatGPT basieren – sind in der Schweißtechnik noch selten. Wie kann man sich also selbst an das maschinelle Lerne...

KI Maschinelles Lernen Qualitätsüberwachung Schweißnähte Schweißtechnik
Mehr erfahren
06.09.2024

Nachhaltiger schweißen

Fronius setzt mit einer zertifizierten Lebenszyklusanalyse und einer ganzheitlichen Betrachtung des Schweißens einen revolutionären Schritt in puncto Nachhaltigkeit und R...

Lebenszyklusanalyse Nachhaltigkeit Ressourceneffizienz Schweißanwendungen Schweißtechnik
Mehr erfahren