Forschung
© Fraunhofer IPT
23.02.2022

Laserauftragschweißen: Optische Kohärenztomografie verbessert Prozessstabilität

Laserauftragschweißen: Optische Kohärenztomografie verbessert Prozessstabilität

Prozessstabilität und -kontrolle sind beim Laserauftragschweißen von großer Bedeutung: Auf Störungen und Abweichungen muss idealerweise sofort und ohne Verzögerung reagiert werden, um Prozessabbrüche zu verhindern. Hier sind maschinenintegrierte Überwachungssysteme gefragt, die die Prozesse an Ort und Stelle prüfen und Korrekturen veranlassen können. Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen hat mit Partnern aus Industrie und Forschung das bildgebende Verfahren der optischen Kohärenztomografie (OCT) in einen koaxialen Prozess zum Laserauftragschweißen von Draht integriert. Die OCT kann den Schweißvorgang nicht nur aufzeichnen, sondern die Qualität im laufenden Prozess kontrollieren und so Ausschuss reduzieren. Das LMD-w soll damit in Zukunft als vollwertiges 3D-Druckverfahren genutzt werden.

Das Laserauftragschweißen von Draht (Wire-based Laser Metal Deposition, kurz: LMD-w) ist ein additives Fertigungsverfahren, bei dem ein Metalldraht als Zusatzwerkstoff mithilfe eines Lasers in Schweißraupen auf einem Werkstück aufgeschweißt wird. Mehrere dieser Schweißraupen nebeneinander ergeben eine Schicht, mehrere Schichten aufeinander ein Bauteil. Da beim LMD-w nur dort Werkstoff aufgetragen wird, wo er gebraucht wird, zählt es zu den ressourcenschonenden Verfahren. Die aufwendige Prozessentwicklung und die geringe Prozessstabilität verhinderten jedoch bisher einen breiteren industriellen Einsatz, der über spezielle Reparaturverfahren oder das Aufbringen von Verschleißschutzschichten hinausgeht.

Im Forschungsprojekt „TopCladd – Adaptive Laser Cladding for Precise Metal Coating Based on Inline Topography Characterization“ haben die Aachener Forschungspartner erstmals ein koaxiales LMD-w-System mit einem OCT-System versehen, um den Laserprozess zu stabilisieren und aktiv zu regeln. Die OCT, die ihren Ursprung in der Augenheilkunde findet, ist ein Messverfahren zur berührungslosen und hochaufgelösten Darstellung tomographischer Schnittbilder, das auf kurzkohärenter Interferometrie basiert. In Kombination mit einer hohen Messfrequenz kann anhand der OCT die Oberflächenqualität der Auftragsschweißnaht direkt im Prozess geprüft und verbessert werden.

© Fraunhofer IPT
© Fraunhofer IPT
Laserauftragschweißen plus OCT – der Weg zur Prozessstabilität

Die Qualität beim Laserauftragschweißen hängt vor allem von der Oberfläche der Schweißnaht ab: je welliger, desto geringer die Bauteilqualität. Um den Prozess des Laserauftragschweißens stabiler zu machen und eine qualitativ hochwertige Schweißnaht zu fertigen, müssen die Prozessschritte einzeln aufgenommen werden. Qualitativ mangelhafte Schweißnähte können dann nachträglich ausgebessert und der Schweißprozess für zukünftige Fertigungen angepasst werden. Die OCT ist in der Lage, die Oberfläche der Schweißnaht im Phasenübergang von fest zu flüssig zu überprüfen und damit die Ausprägung der finalen Schweißraupengeometrie zu bestimmen. Anhand der gewonnenen Daten lässt sich der Laserprozess gegebenenfalls in der benachbarten oder darüberliegenden Schweißraupe anpassen.

Um die Vorteile der OCT für den Prozess des Laserschweißens zu nutzen, integierten Fraunhofer-Forscherinnen und -Forscher das OCT-System koaxial in den Bearbeitungskopf des Lasers. Der Laser zur Bearbeitung und das OCT-System nutzen dabei eine gemeinsame Optik, interferieren aber aufgrund ihrer unterschiedlichen Wellenlängen nicht. Die Koaxialität des Bearbeitungs- und Messlichts wird durch die Verwendung eines sogenannten Axikons, einer kegelförmigen Linse, sowie einiger prismenförmiger Optiken gewährleistet. Dieses optische Design ermöglicht es, dass der Messlaser die aufgetragene Schweißnaht um den zentral verlaufenden Metalldraht herum kreisförmig abtasten kann. So gelingt eine multidirektionale Messung, unabhängig von der Bewegungsrichtung des Schweißkopfes. Auf diese Weise kann das gesamte Werkstück vermessen werden, ohne dass der Draht das Messlicht blockiert.

Mit OCT zur aktiven Prozessregelung

Die Integration der OCT in den Prozess des Laserauftragschweißens erlaubt es, die Oberflächenstruktur der gesamten Schmelzspur genau abzubilden. Anhand der Prozessdaten, die im Projekt gesammelt wurden, entwickeln die Aachener Forscherinnen und Forscher ein Prozessmodell für eine datengestützte Prozessanpassung und -regelung. Die Laserprozesse werden dadurch robuster, sodass sich eine Vielzahl neuer Anwendungsfelder erschließen lässt. »Mit der OCT können wir beim Laserauftragschweißen in Zukunft nicht nur ein bis zwei Ebenen übereinander aufbringen, sondern beliebig viele Schichten. Auf diese Weise wird das LMD-w zu einem vollwertigen und nachhaltigen additiven Herstellungsverfahren aufgewertet«, sagt Robin Day, Leiter der Abteilung »Energetische Strahlverfahren« am Fraunhofer IPT.

Das Projekt „TopCladd – Adaptive Laser Cladding for Precise Metal Coating Based on Inline Topography Characterization“ wurde für vier Jahre vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Förderprogramms „M-ERA.Net – flexible und bedarfsgerechte transnationale Förderung im Bereich der Materialforschung“ unter dem Förderkennzeichen 13N14265 gefördert.

Die Projektpartner:
  • Deltatec S.A., Ans, Belgien
  • Dinse GmbH, Hamburg
  • Fraunhofer-Institut für Produktionstechnologie IPT, Aachen
  • Laserco S.A., Charleroi, Belgien
  • Precitec GmbH & Co. KG, Gaggenau
  • Quada V+F Laserschweißdraht GmbH, Hemer

(Quelle: Presseinformation des Fraunhofer-Instituts für Produktionstechnologie IPT)

Schlagworte

Additive FertigungLaserauftragschweißenSchweißprozesseSchweißtechnikSchweißverfahren

Verwandte Artikel

27.11.2025

Fachtagung Oberbauschweißtechnik

Mit den zweijährlich stattfindenden Fachtagungen Oberbauschweißtechnik bietet die SLV Hannover gemeinsam mit der PlusPol Akademie und dem VDEI eine zentrale Plattform für...

Ausbildung Modernisierung Oberbauschweißtechnik Qualitätssicherung Regelwerke Schienen Schweißen Schweißtechnik Verfahren
Mehr erfahren
Tobias Röcker (CEO, PartsToGo, Mitte), Manuel Kappler (Application Engineer, PartsToGo, links) und Kai Wagner (Sales Manager, Sonotronic, rechts) präsentieren bei der offiziellen Übergabe das Ultraschall-Handschweißgerät iSONIC WAVE HSG sowie zwei 3D-gedruckte Kunststoffteile mit den Logos beider Unternehmen, die zu einem Bauteil verschweißt wurden.
22.11.2025

Strategische Partnerschaft: Ultraschall trifft 3D-Druck

Sonotronic, ein Unternehmen, das sich auf Ultraschalltechnologie spezialisiert hat, und die PartsToGo GmbH, Fachhändler und Dienstleister für industrielle 3D-Drucklösunge...

3D-Druck Additive Fertigung Fügen von Kunststoffen Schweißen Technologie Ultraschallschweißen
Mehr erfahren
17.11.2025

Rückblick 35. Schweißtechnische Tagung

Zwei Tage lang wurde auf der 35. Schweißtechnische Tagung in Halle diskutiert, ausprobiert und vernetzt. Die Veranstaltung war geprägt vom gemeinsamen Willen, Wissen zu t...

Arbeitssicherheit Automatisierung Forschung Innovationskraft Qualitätssicherung Schweißen Schweißtechnik Stahlbau Tagung Technologien Umweltschutz
Mehr erfahren
StAlVac verbindet datengestützte Materialentwicklung, Additive Fertigung und Werkstoffinnovation – für die nächste Generation hybrider Leichtbauteile
15.11.2025

Datengestützte Materialentwicklung für den metallbasierten Leichtbau

Multimaterialbauteile aus Aluminium und Stählen mit geringer Dichte gelten als ein Schlüssel für den Leichtbau der Zukunft. Doch ihre Herstellung ist komplex und fehleran...

Additive Fertigung Aluminium Effizienz Hybridbauteile Laserstrahlauftragschweißen Leichtbau Polymere Werkstoffe Stahl
Mehr erfahren
Rendering des Fraunhofer-IWU-Messestands für die Formnext. Gäste können die Exponate in den frei stehenden Elementen von mehreren Seiten betrachten.
13.11.2025

3D-gedruckter Messestand auf der Formnext

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik (IWU) präsentiert neue Materialien für die additive Fertigung am selbst gedruckten Messestand.

3D-Druck Additive Fertigung Laserstrahl LPBF Luft- und Raumfahrt Luftfahrttechnik Materialien Metallpulver Titanaluminid Wolfram
Mehr erfahren