Forschung
Moleküle - © Денис Марчук/ Pixabay
05.01.2025

Multi-Material-Verbindungen von kohlefaserverstärkten Kunststoffen und Aluminium für Leichtbauanwendungen

In der aktuellen Ausgabe unserer Fachzeitschrift JOINING PLASTICS/FÜGEN VON KUNSTSTOFFEN sowie im Archiv finden Sie viele weitere interessante Beiträge. Schauen Sie doch dort mal vorbei.
Joining Plastics

Electron Beam Bonding: Multi-Material-Verbindungen von kohlefaserverstärkten Kunststoffen und Aluminium für Leichtbauanwendungen

Die 26. UN-Klimakonferenz hat die dringende Notwendigkeit hervorgehoben CO2-Emissionen zu reduzieren. Für über 20% der globalen Emissionen ist der Verkehrssektor verantwortlich, dessen Hauptstrategie es ist, durch Flottenelektrifizierung Klimaneutralität zu erreichen. Die größten Herausforderungen sind jedoch das derzeitige Gewicht der Komponenten, die Kosten der Systeme zur Gewährleistung der Effizienz und langfristige Nachhaltigkeit. Die Industrie hat erkannt, dass es transformativer Technologien und fortschrittlicher Produktionsmethoden bedarf um leichtere, effizientere sowie kostengünstige Lösungen zu entwickeln die essenziell für die Unterstützung dieses Wandels und die Erreichung der Klimaziele sind.

Elektrische- und elektronische Geräte des Verkehrswesens, wie sie in der Luftfahrt- und Automobilindustrie zu finden sind, müssen entstehende Wärme effizient abführen können, um sensible Komponenten zu schützen und ihre Langlebigkeit zu gewährleisten. Kommt es zu lokalem Wärmestau kann dieser die Leistung beeinträchtigen und die Einsatzdauer verkürzen. Folglich werden Bauteile, die eine wirksame Wärmeableitung erfordern, wie Gehäuse von Elektromotoren, Leistungselektronik und Batterien, in der Regel aus konventionell hergestelltem Stahl oder Aluminiumlegierungen gefertigt.

Kohlefaserverstärkte Kunststoffe (CFKs)

In den vergangenen Jahren haben kohlefaserverstärkte Kunststoffe (CFKs) zunehmend Metalle in Produkten ersetzt, bei denen es auf eine geringe Masse bei gleichzeitig hervorragender mechanischer Festigkeit ankommt, wie es in Flugzeugen oder Hochleistungsfahrzeugen der Fall ist. Allerdings ist der Nutzen von CFKs aufgrund der schlechten Wärmeleitfähigkeit auf Anwendungen beschränkt, bei denen eine gute Wärmeabfuhr nicht an oberster Stelle steht. Um diesen Limitierungen entgegenzuwirken kann eine Kombination von Aluminium und CFKs genutzt werden. Somit lassen sich die Vorteile beider Materialien ausnutzen, die als Metall-Polymer-Multimaterialien bezeichnet werden und auf Leichtbaustrukturen mit verbesserten mechanischen Eigenschaften und gutem Wärmemanagement abzielen.

Electron Beam Bonding - © Fraunhofer IPK
Ein neuartiges Verfahren „Electron Beam Bonding“ zur Herstellung von Multimaterial-Bauteilen im Überlapp- und Stumpfstoß und Bilder von additiv gefertigtem AlSi10Mg und kohlefaserverstärktem PA6, die mit diesem Verfahren verbunden wurden. © Fraunhofer IPK
Elektronenstrahl-Bindung

Eine große Herausforderung liegt in der Herstellung der Metall-Polymer-Multimaterialien aufgrund der Schwierigkeit eine starke Verbindung zwischen nicht artgleichen Materialien zu schaffen, was auf den unterschiedlichen chemischen und physikalischen Eigenschaften beruht. Das Fraunhofer IPK hat hierfür eine neue Methode „Electron Beam Bonding“ entwickelt, um diese Herausforderung mit Hilfe innovativer Elektronenstrahltechnologien zu meistern. Bei diesem Verfahren wird die thermische Energie mittels Elektronenstrahl und definiertem Scanfeld gleichmäßig auf die Metalloberfläche eingebracht, um die für das Erreichen der Schmelztemperatur des Verbundmaterials benötigte Wärmemenge zu erzielen. Durch den direkten Kontakt von Metall und Verbundwerkstoff findet ein Wärmetransport statt, welcher zum lokalen Aufschmelzen des Verbundwerkstoffs und damit zu Adhäsion am Metallteil führt. Elektronenstrahl-Bindung bietet mehrere Vorteile, darunter die Möglichkeit den Prozess unter Vakuum auszuführen, wodurch die Bildung von Oxidschichten auf der metallischen Oberfläche oder Gasbläschen im Verbundmaterial verhindert werden. Aufgrund der sehr flexiblen Bewegungsmöglichkeiten des Elektronenstrahls und der Möglichkeit die Strahlablenkung individuell einzustellen, eignet sich das Verfahren für alle geometrischen Formen und Verbindungsarten wie Überlapp-, Stumpf-, Eck- und T-Stöße. „Electron Beam Bonding“ Die neuartige Methode „Electron Beam Bonding“ wurde im Rahmen des MULTHEM- Projekts für das Fügen von additiv gefertigten Aluminium- und kohlefaserverstärkten Kunststoffen zur Herstellung von Multimaterialien entwickelt. Das Projekt „MULTHEM – Multi Material Additive Manufacturing for Lightweight and Thermal Management” wird von der Europäischen Union im Rahmen des Horizont Europa Programms für Forschung & Innovation für 2021 bis 2027 unter der Finanzhilfevereinbarung Nr. 101091495 gefördert. Neben den Forschungs- und Technologieorganisationen, sind auch Industrieunternehmen an dem Projekt beteiligt, um diesen innovativen Ansatz auf ihre Produkte, beispielsweise Radioaltimetergehäuse für Flugzeuge (Thales), Elektromotorgehäuse für Drohnen (AirElectric) und Batteriegehäuse für Elektrofahrräder (ÉireComposites), anzuwenden. Dieser innovative Ansatz ermöglicht die Herstellung von leichten Batterie- und Motorgehäusestrukturen mit verbesserten mechanischen Eigenschaften und Kühlfunktionen.

(Quelle: Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK, Berlin)

Schlagworte

AMElektronenstrahlForschungKunststoffLeichtbauPolymer

Verwandte Artikel

14.02.2026

Christoph Kutter ist neuer Präsident des VDE

Prof. Dr. Christoph Kutter löst den bisherigen VDE Präsidenten Alf Hendryk Wulf als VDE Präsident ab. Im Fokus seiner Präsidentschaft stehen junge Menschen und die Mikroe...

Digitalisierung Elektrotechnik Energiewende Forschung Fraunhofer Informationstechnik Ingenieur Mikroelektronik MINT VDE
Mehr erfahren
Mitglieder der DVS-Fachgruppe FG 3.3 „Schweißtechnische Ausbildung an Hochschu-len und Universitäten“
12.02.2026

Studierende im Fokus: DVS-Umfrage erfasst Bedarfe für Lehre und Forschung

Die DVS-Fachgruppe FG 3.3 hat eine Umfrage unter Studierenden gestartet, um ihre Bedürfnisse für Lehre und Lehre zu erfassen.

Ausbildung DVS-Fachgruppe DVS-Forschung Forschung Fügetechnik Industrie Lehre Schweißtechnik SFI Weiterbildung
Mehr erfahren
10.02.2026

Wie Weiterbildungsmentoren die Kunststoffindustrie stärken

Mit dem neuen Projekt „WBMplusK – Wandel begleiten“ qualifiziert das Kunststoff-Zentrum SKZ gemeinsam mit dem Forschungsinstitut Betriebliche Bildung (f-bb) in den nächst...

Betrieb Bildung Entwicklung Kunststoff Kunststoffindustrie Mentoring Qualifikation Weiterbildung
Mehr erfahren
Prokuristin der Evosys Laser GmbH Marie Schafnitzl mit der Auszeichnung zum „Top-Innovator 2026“
08.02.2026

Evosys Laser GmbH erneut mit TOP 100-Siegel ausgezeichnet

Das Unternehmen wurde 2026 erneut mit dem TOP 100-Siegel ausgezeichnet und zählt damit zu den innovativsten mittelständischen Unternehmen Deutschlands.

Fertigung Forschung Innovationen Innovationspreis Kunststoffschweißen Laserstrahlschweißen
Mehr erfahren
08.02.2026

Last Call for Papers: DVS CONGRESS 2026

Der Deutsche Verband für Schweißen und verwandte Verfahren e. V. lädt Fachleute aus Industrie und Forschung sowie engagierte Nachwuchskräfte ein, Vortragsangebote für den...

Beschichtungstechnik Digitalisierung Forschung Fügetechnik Hochleistungswerkstoffe Industrie KI Kongress Schneiden Schweißen Stahlbau Tagung Trenntechnik
Mehr erfahren