Technologien
© Steigerwald Strahltechnik
08.02.2023

Edelstahldrahtbasierte Additive Fertigung mit dem Elektronenstrahl

Edelstahldrahtbasierte Additive Fertigung mit einer Elektronenstrahlanlage der Steigerwald Strahltechnik GmbH

Die Steigerwald Strahltechnik GmbH mit Sitz in Maisach, Deutschland ist der weltweit führende Spezialmaschinenhersteller von Elektronenstrahlanlagen. Die Einsatzbereiche der auf die Kunden zugeschnittenen Anlagen sind das Schweißen, das Bohren, die Oberflächenbehandlung (z.B. Härten) und die Additive Fertigung. Letztere bietet die Möglichkeit auf Grundlage von CAD-Modellen Schicht für Schicht ein Bauteil aufzubauen. Dadurch kann grundsätzlich ein hoher Grad an Bauteilkomplexität (z.B. Gitterstrukturen), günstiger Prototypenbau, Konsolidierung einer Baugruppe zu einem Bauteil sowie Kosteneinsparungen für Kleinserien erreicht werden. Das entwickelte und innovative EBOADD-Verfahren gehört zu den drahtbasierten Verfahren. Dabei wird ein Draht mit dem Elektronenstrahl aufgeschmolzen und selektiv deponiert.

Im Gegensatz zu pulverbasierten Verfahren bietet das EBOADD-Verfahren eine höhere Aufbaurate. Zusätzlich ist das Rohmaterial in Drahtform in der Anschaffung günstiger und weniger anfällig für äußere Verunreinigung wie z.B. durch Sauerstoff. Ein weiterer Vorteil von EBOADD ist der Elektronenstrahl. Dieser kann mit bis zu 150 kV Beschleunigungsspannung herausfordernde Materialien aufschmelzen, die z.B. eine hohe Reflektivität (Kupfer) oder eine sehr hohe Schmelztemperatur (Wolfram) aufweisen. Auch rissanfällige (Nickellegierungen) oder reaktive Materialien (Titanlegierungen) können gut verarbeitet werden. Letzteres ist durch das erforderliche Vakuum gegeben.

Experimentelle Durchführung

Verwendet wird eine Elektronenstrahlanlage mit einem Kammervolumen von 22 m³ und einem 150 kV Elektronenstrahlgenerator. Die Startplatte wird auf einer Kipp-Z-Drehvorrichtung eingespannt. Die verwendete Anlage und der beispielhafte Versuchsaufbau werden in Abbildung 1 dargestellt.

Abbildung 1: Links: Verwendete Elektronenstrahlanlage. Rechts: Beispielhafter Versuchsaufbau für die drahtbasierte additive Fertigung. Dargestellt ist die Drahtzuführung, eine Startplatte sowie das zu bauende Bauteil während des Herstellprozesses. - © Steigerwald Strahltechnik GmbH
Abbildung 1: Links: Verwendete Elektronenstrahlanlage. Rechts: Beispielhafter Versuchsaufbau für die drahtbasierte additive Fertigung. Dargestellt ist die Drahtzuführung, eine Startplatte sowie das zu bauende Bauteil während des Herstellprozesses. © Steigerwald Strahltechnik GmbH

Zu Beginn wird eine Startplatte im Vakuum mit einem defokussierten Strahl auf 600-800 °C vorgeheizt. Für diesen Vorgang ist keine zusätzliche Hardware erforderlich. Der additive Aufbau erfolgt mit einer Beschleunigungsspannung von 100 kV und einem Strahlstrom von 11-12 mA. Der auf einen Punkt zentrierte Strahl bewegt sich mit 20 Hz und einem Radius von 2,25 mm um ein Zentrum herum. In dieses Zentrum wird ein Edelstahldraht (Werkstoffnummer 1.4316) von 1,6 mm Durchmesser mit einer Geschwindigkeit von 15 mm/s diskontinuierlich befördert, aufgeschmolzen und deponiert. Im Gegensatz zu einer kontinuierlichen Drahtzuführung wird der Ansatz verfolgt, dass mit einer Punktaufbaudauer von 1s, Punkt für Punkt das Bauteil aufgebaut wird. Bedeutet, nachdem ein Punkt additiv aufgebaut wurde, wird der Draht leicht zurückgezogen und das Bauteil um 3 mm bewegt (Abstand der Punkte zueinander). Die Orientierung der Drahtzuführung zur aufgebauten Wand hat durchgehend einen Winkel von 90° (seitlich). Die Schichtdicke beträgt 1,5 mm. Damit wird eine Aufbaurate von ca. 30 cm²/h erreicht.

Für den Zugversuch werden Proben nach DIN 50125 mit der Probengeometrie E aus dem additiv gefertigtem Muster geschnitten. Zwei Orientierungen, vertikal und horizontal zur Aufbaurichtung, werden untersucht. Der Zugversuch wird an einer Universalprüfmaschine, Inspect 50 desk von Hegewald Peschke, mit einer Dehnrate von 0,0067 1/s durchgeführt.
Die Härtemessung nach Vickers erfolgt an einem polierten Schliff, mittig entlang der Aufbaurichtung. Verwendet wird das Modell Z3.2A der Firma Zwick & Co. KG.

Für den metallographischen Schliff wird die Probe eingebettet und mit Schleif-papier aufsteigender Körnungen (120 – 1.000 Körnungen) plan geschliffen und mit einer abschließenden Diamantpolitur (3 µm) poliert. Für das Gefügebild in Abbildung 2b wird die Probe nach Adler geätzt.

Ergebnisse und Diskussion

In Abbildung 2a ist das hergestellte Muster dargestellt. Es ist ein Quadrat mit einer Kantenlänge von 90 mm und einer Wandstärke von ca. 5 mm.

Abbildung 2: a) Mit dem EBOADD-System hergestelltes Rechteck. Die Kantenlänge beträgt 90 mm und die Wandstärke 5 mm. Der gelbe und grüne Rahmen geben die Positionen der Schliffe wieder. b) Der Schliff zeigt ein kolumnares Gefüge in Aufbaurichtung. c) Der Schliff zeigt das Gefüge bei einer hohen Auflösung, es besteht aus Austenit mit Deltaferrit. - © Steigerwald Strahltechnik GmbH
Abbildung 2: a) Mit dem EBOADD-System hergestelltes Rechteck. Die Kantenlänge beträgt 90 mm und die Wandstärke 5 mm. Der gelbe und grüne Rahmen geben die Positionen der Schliffe wieder. b) Der Schliff zeigt ein kolumnares Gefüge in Aufbaurichtung. c) Der Schliff zeigt das Gefüge bei einer hohen Auflösung, es besteht aus Austenit mit Deltaferrit. © Steigerwald Strahltechnik GmbH

Der hergestellte Schliff in Abbildung 2b zeigt ein kolumnares Gefüge, welches in Aufbaurichtung orientiert ist. Abbildung 2c stellt das austenitische Gefüge mit Deltaferrit dar. Defekte wie Poren, Risse oder Schichtanbindungsfehler werden nicht detektiert.

Im Zugversuch wird vertikal eine Zugfestigkeit von 500 MPa ± 8 MPa und horizontal von 550 MPa ± 4 MPa ermittelt. Hinsichtlich der Bruchdehnung wird vertikal ein Wert von 58,0 % ± 1,8 % und horizontal einen Wert von 52,4 % ± 0,4 % gemessen. Anhand dieser Ergebnisse ist eine gewisse Anisotropie zu erkennen wie sie typisch für die Additive Fertigung ist [1-2]. Im technischen Datenblatt des Drahts werden Richtwerte von 590 MPa Zugfestigkeit und 35 % Bruchdehnung angegeben. Es zeigt sich, dass die hier ermittelten Werte hinsichtlich der Zugfestigkeit knapp darunter und hinsichtlich der Bruchdehnung weit darüber befinden. Die gemessene Härte liegt bei 173,5 ± 9,47 HV0,5 und damit leicht über den Angaben des technischen Datenblattes von 160 HV.

Die erwähnte Aufbaurate von ca. 30 cm³/h ist verglichen zu einem kontinuierlichen Drahtvorschub niedriger. Dies konnte jedoch weiter optimiert werden (siehe Abbildung 3). Der angewendete Ansatz bietet allerdings den Vorteil nicht rotationssymetrische Bauteile besser herstellen zu können. In Abbildung 3 sind exemplarisch verschiedene Geometrien mit unterschiedlichen Materialien dargestellt, die bei der Steigerwald Strahltechnik GmbH mit EBOADD hergestellt wurden.

Abbildung 3: Beispielbauteile unterschiedlicher Geometrien und verwendeter Materialien, hergestellt bei der Steigerwald Strahltechnik GmbH. a) Material: TiAl6V4; Aufbaurate: ca. 80 cm³/h, b) Inconel 718; Aufbaurate: ca. 60 cm³/h und c) Aluminium 3.3548. - © Steigerwald Strahltechnik GmbH
Abbildung 3: Beispielbauteile unterschiedlicher Geometrien und verwendeter Materialien, hergestellt bei der Steigerwald Strahltechnik GmbH. a) Material: TiAl6V4; Aufbaurate: ca. 80 cm³/h, b) Inconel 718; Aufbaurate: ca. 60 cm³/h und c) Aluminium 3.3548. © Steigerwald Strahltechnik GmbH
Zusammenfassung und Ausblick

Das von Steigerwald Strahltechnik GmbH entwickelte EBOADD-Verfahren bietet die Möglichkeit, eine drahtbasierte Additive Fertigung durchzuführen. Es können eine große Bandbreite von metallischen Legierungen verarbeitet werden. Auch der Aufbauprozess und die Strahlführung können beliebig mit der CNC-Programmierung vorgegeben werden.

Die Ergebnisse zeigen das Potenzial der drahtbasierten Additiven Fertigung für komplexere Geometrien. Zusätzlich können mit den hier gezeigten Prozessparametern ein defektfreies und stängelkristallines Gefüge mit einer leicht anisotropen Zugfestigkeit und einer hohen Bruchdehnung erzielt werden.

Somit bietet dieser Prozess ein großes Potenzial hinsichtlich der drahtbasierten Additiven Fertigung. Es können schwierig zu verarbeitende Materialien verwendet werden um mittels dem punktuellen Auftrag komplexere Geometrien zu erzeugen. Großes Optimierungspotential liegt auch bei der Aufbaurate und der möglichen parallelen Nutzung mehrerer Materialien.

Danksagung

Unser Dank geht an Prof. Dr.-Ing. Ghazal Moeini. Sie hat sich bereit erklärt die mechanischen Eigenschaften (Zugversuch) sowie das Mikrogefüge der additiv aufgebauten Proben zu untersuchen.

Referenzen

[1] C. Körner (2016) Additive manufacturing of metallic components by selective electron beam melting – a review, International Materials Reviews, 61:5, 361-377, DOI: 10.1080/09506608.2016.1176289
[2] R. Guschlbauer, A. K. Burkhardt, Z. Fu, C. Körner (2020) Effect of the oxygen content of pure copper powder on selective electron beam melting, Materials Science and Engineering: A, Volume 779, DOI: 10.1016/j.msea.2020.139106.

© Ralf Guschlbauer, Entwicklungsingenieur, Steigerwald Strahltechnik GmbH, r.guschlbauer@sst-ebeam.com
Pavlo Denysiuk, Entwicklungsingenieur, Steigerwald Strahltechnik GmbH
Dr. Michael Maaßen, Forschung & Entwicklung Leitung, Steigerwald Strahltechnik GmbH
Prof. Dr.-Ing. Ghazal Moeini, Institut für Maschinenbau, Westfälische Hochschule

Weitere Informationen finden Sie unter:

www.eboadd.com und www.sst-ebeam.com
Steigerwald Strahltechnik GmbH
Emmy-Noether-Straße 2
DE - 82216 Maisach
info@sst-ebeam.com

(Quelle: Steigerwald Strahltechnik GmbH)

Schlagworte

3D-DruckAdditive FertigungEBOADDElektronenstrahlElektronenstrahlbohrenElektronenstrahlschweißenKupferNickellegierungenOberflächenbehandlungTitanlegierungenWolfram

Verwandte Artikel

Joachim Rapp (Geschäftsführung Innotech) und Dr. Daniel Adams (Vice President 3D Printing bei Henkel) (v.l.n.r.) freuen sich über den Ausbau der Zusammenarbeit.
28.11.2024

Innotech ist neuer Master Fulfillment Partner für Loctite 3D-Drucklösungen

Die Einführung der Loctite 3D-Drucklösungen bei der Innotech Marketing und Konfektion Rot GmbH ist ein Meilenstein in der Zusammenarbeit der beiden Unternehmen.

3D-Druck DLP-Systeme Harze Klebapplikationen Kleben Klebtechnik LCD-Systeme
Mehr erfahren
25.11.2024

Elektronenstrahlschweißen – Ein innovatives Verfahren für Forschung und Industrie

Das Elektronenstrahlschweißen gilt als unverzichtbar, wenn Präzision und Effizienz gefragt sind. Steigerwald Strahltechnik ist mit seinen Anlagen führend in diesem Bereic...

Elektronenstrahlschweißen Schweißtechnik
Mehr erfahren
20.11.2024

Update: DIN EN ISO 15614-5 „Schweißverfahrensprüfung für das Schweißen von Titan, Zirkonium und deren Legierungen“

Es gibt eine Neufassung der DIN EN ISO 15614-5 „Anforderung und Qualifizierung von Schweißverfahren für metallische Werkstoffe – Schweißverfahrensprüfung – Teil 5: Lichtb...

Lichtbogenschweißen Metall-Intergasschweißen MIG Schweißen Plasmaschweißen Schweißtechnik Schweißverfahrensprüfung Titan Titanlegierungen Vorläufige Schweißanweisung WIG Schweißen Wolfram-Inertgasschweißen Zirkonium Zirkoniunmlegierungen
Mehr erfahren
Mit der aktuell im Aufbau befindlichen Anlage lassen sich mithilfe von LCoS-SLMs durch gezielte Krümmung der Phasenfront des Laserstrahls nahezu beliebige Strahlprofile im LPBFProzess erzeugen.
11.11.2024

Flexible Strahlformungs-Plattform optimiert LPBF-Prozesse

Neuer Ansatz in der Strahlformung macht die additive Fertigung flexibler und effizienter: Das Fraunhofer ILT hat eine neue Plattform entwickelt, mit der Laser Powder Bed...

Additive Fertigung Laser Powder Bed Fusion LPBF SLM Spatial Light Modulators Strahlformung
Mehr erfahren
Die 3D-Druck-Technologie von TRUMPF ermöglicht die Produktion von besonders leichten und steifen Komponenten für die Halbleiterindustrie.
11.11.2024

Halbleiterhersteller sparen Kosten mit TRUMPF 3D-Druckern

Die 3D-Druck-Technologie von TRUMPF macht Fertigungssysteme für die Halbleiterindustrie präziser und effizienter.

3D-Druck Fertigungssysteme Halbleiterherstellung Halbleiterindustrie
Mehr erfahren