Trendthema Forschung
Die neue additive Fertigungsanlage des Fraunhofer IWS wird aus metallischen Pulvern wie Aluminium, Titan oder Kupfer schichtweise besonders große Bauteile mit komplexer Geometrie erzeugen: zum Beispiel Brennkammern für Wasserstoff-Energiesysteme, Schaufelradeinhausungen für Turbinen und andere komplexe Maschinen-Komponenten oder Werkzeuge. - © Christoph Wilsnack/Fraunhofer IWS
02.11.2023

Fraunhofer IWS installiert europaweit einzigartigen Industrie-3D-Drucker

Fraunhofer IWS installiert europaweit einzigartigen Industrie-3D-Drucker

Das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden installiert einen europaweit einzigartigen industriellen 3D-Drucker. Die additive Fertigungsanlage des Herstellers Farsoon basiert auf dem selektiven Laserstrahlschmelzen im Pulverbett. Sie kann aus Aluminium, Titan, Nickel, Eisen, Kupfer und anderen metallischen Pulvern schichtweise besonders große Bauteile mit komplexer Geometrie erzeugen.

Die Wissenschaftlerinnen und Wissenschaftler des Fraunhofer IWS richten ihre Forschungs- und Entwicklungsarbeiten mit der Fertigungsanlage auf komplexe, großvolumige Bauteile wie beispielsweise Brennkammern für Wasserstoff- Energiesysteme, Schaufelradeinhausungen für Turbinen und andere komplexe Maschinen-Komponenten oder Werkzeuge. Gemeinsam mit der Brandenburgischen Technischen Universität Cottbus-Senftenberg (BTU) planen sie im Verbundvorhaben „SpreeTec neXt“ unter anderem in der Lausitz neue Fertigungsprozesse und Wertschöpfungsketten für die Zeit „nach der Kohle“ zu etablieren. Auch neue Geschäftsmodelle für die Reparatur schwer verfügbarer landwirtschaftlicher, energietechnischer oder industrieller Ersatzteile sind damit absehbar.

Alleinstellungsmerkmale für den regionalen Mittelstand

„Mit solcher Anlagentechnik kann sich der ostdeutsche Mittelstand mit Hilfe des Fraunhofer IWS besondere Alleinstellungsmerkmale erarbeiten“, betont Institutsleiter Prof. Christoph Leyens. „Vor allem in der Transformationsregion Lausitz geben Projekte wie „SpreeTec neXt“ der regionalen Wirtschaft neue Impulse.“ Zwar verfügen inzwischen bereits einige Betriebe über 3D-Drucker. Doch diese Geräte sind in ihren Fähigkeiten meist limitiert: Sie sind beispielsweise lediglich auf Kunststoff-Prototypen spezialisiert, können nur vergleichsweise kleine metallische Komponenten erzeugen oder zwar große, aber dafür eher weniger komplex geformte Bauteile mit anderen Fertigungsverfahren wie dem Auftragschweißen. Moderne 3D-Drucker wie die am Fraunhofer IWS mischen indes die Karten neu: Die neue AM-Anlage kann Bauteile generieren, die bis zu 62 mal 62 mal 110 Zentimeter messen.

Filigrane und komplexe Strukturen schließen sich in Zukunft auch bei Großbauteilen nicht aus – zum Beispiel beim Aerospike-Raketentriebwerk, das die Forschenden mit dem Institut für Luft- und Raumfahrttechnik der Technischen Universität Dresden im Rahmen des ESA-Projekts ASPIRER (General Support Technology Program Nr. 4000130551/20/NL/MG) entwickeln. - © Christoph Wilsnack/Fraunhofer IWS
Filigrane und komplexe Strukturen schließen sich in Zukunft auch bei Großbauteilen nicht aus – zum Beispiel beim Aerospike-Raketentriebwerk, das die Forschenden mit dem Institut für Luft- und Raumfahrttechnik der Technischen Universität Dresden im Rahmen des ESA-Projekts ASPIRER (General Support Technology Program Nr. 4000130551/20/NL/MG) entwickeln. © Christoph Wilsnack/Fraunhofer IWS

„Damit bietet diese Anlage ganz neue Möglichkeiten, selbst sehr große Bauteile mit komplexer Geometrie in hoher Qualität additiv zu fertigen“, erklärt Dr. Lukas Stepien, der am Fraunhofer IWS die Gruppe für Pulverbettverfahren und Drucken leitet. „Damit eröffnet sie Einsatzchancen für den industriellen 3D-Druck in noch mehr Branchen und Anwendungen.“

Vorstellbar ist beispielsweise ein dezentrales Additive Manufacturing (AM) dort, wo permanent neue Komponenten und Werkzeuge für kleine Losgrößen gebraucht werden oder Ersatzkomponenten nur schwer zu beschaffen sind. Interessant ist das unter anderem für den Automobilbau, die Luft- und Raumfahrt, die Energieanlagenwirtschaft und den Werkzeugbau.  Derartige AM-Großanlagen können künftig auch die schnelle Ersatzteilbeschaffung für hochwertige Landmaschinen im Agrarsektor erleichtern.

Neues Innovationszentrum soll auch regionalen Strukturwandel stärken

Im Zuge von „SpreeTec neXt“ wollen die Projektpartner bis 2029 in der Lausitz ein Innovationszentrum etablieren, das den regionalen Strukturwandel stärkt. Dafür arbeiten BTU und Fraunhofer in der Additiven Fertigung zusammen. Das Fraunhofer IWS bringt hier seine besondere Expertise in der Additiven Fertigung, der Prozessentwicklung sowie der Werkstoff- und Bauteilanalytik ein. Die BTU widmet sich vor allem der Grundlagenforschung für die AM-Prozesse. Geplant ist, in der Lausitz dauerhaft ein gemeinsames Labor von Fraunhofer und BTU einzurichten, um eine nachhaltige wirtschaftliche Entwicklung zu unterstützen. Das Team soll dann kleine und mittelständische Unternehmen aus der Transformationsregion beim Einsatz fortgeschrittener Technologien rund um die additive Fertigung beraten, Beschäftigte solcher Betriebe weiterbilden und das Wachstum eines AM-Clusters in der Lausitz unterstützen. Das Bundesministerium für Bildung und Forschung (BMBF) wird diese konkreten Teilaufgaben von „SpreeTec neXt“ mit je fünf Millionen Euro fördern.

Temperaturbeständigkeit ist auch für große Bauteile eine entscheidende Voraussetzung. So müssen sich resistente Materialien auch für die additive Fertigung von Brennkammern realisieren lassen (Bauteil im Bild entwickelt mit TU Dresden und ESA). - © Christoph Wilsnack/Fraunhofer IWS
Temperaturbeständigkeit ist auch für große Bauteile eine entscheidende Voraussetzung. So müssen sich resistente Materialien auch für die additive Fertigung von Brennkammern realisieren lassen (Bauteil im Bild entwickelt mit TU Dresden und ESA). © Christoph Wilsnack/Fraunhofer IWS

Erste Einblicke in die daraus erwachsenden Möglichkeiten geben das Fraunhofer IWS und der Partner Farsoon auf der internationalen Fertigungsmesse formnext vom 7. bis 10. November 2023 in Frankfurt am Main.

Wie funktioniert die Additive Fertigung im Pulverbett?

Bei der laserbasierten Additiven Fertigung im Pulverbett schmilzt ein Laserstrahl in einer Gasumgebung feine Metallteilchen auf. Aus dieser Schmelze erzeugt die Anlage nach einem Computermodell Schicht für Schicht das gewünschte Bauteil. So lassen sich Komponenten aus Titan, Kupfer und anderen Metallen beziehungsweise aus deren Legierungen generieren.

Was ist SpreeTec neXt?

Das Verbundvorhaben „Neue Fertigungstechnologien für Komponenten und Systeme der dezentralen Energietechnik“ (SpreeTec neXt) zielt darauf, neue ressourcensparende Fertigungstechnologien für Komponenten und Systeme in der Energieerzeugung, -wandlung und -speicherung zur Praxisreife zu führen. Das können beispielsweise wasserstoffbetriebene Turbinen und Brennstoffzellen, Wärmetauscher oder hybride Photovoltaik- und Solarthermieanlagen sein. Auch neue Werkstoffe, Digitalisierungsansätze und Kreislauf-Prinzipien für diese Anwendungen stehen auf der Projektagenda.

Die Federführung hat die Brandenburgische Technische Universität Cottbus-Senftenberg (BTU) übernommen. Als Partner sind das Fraunhofer-Institut für Angewandte Polymerforschung IAP aus Potsdam und das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS aus Dresden dabei. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das auf sieben Jahre angelegte Vorgaben mit 52,44 Millionen Euro.

(Quelle: Presseinformation des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS)

Schlagworte

3D-DruckAdditive FertigungAluminiumAMEisenKupferLaserstrahlschmelzenMetallpulverNickelPulverbettPulverbettverfahrenTitan

Verwandte Artikel

08.01.2026

Konferenz zum 3D-Metalldruck

Die Konferenz WAAMathon #3 zeigt industrielle Perspektiven des DED-Arc (auch als WAAM – Wire Arc Additive Manufacturing bezeichnet) am 11. Juni 2026 in Berlin.

Additive Fertigung Auftragschweißen DED-Arc Lichtbogen Metalldraht Metalldruck WAAM
Mehr erfahren
05.01.2026

Der Schweißdraht als Sensor

Mit der Weiterentwicklung von WireSense hat Fronius International den Funktionsumfang seines Roboterassistenzsystems erweitert. Das System wird seit mehreren Jahren in de...

Aluminium AM AR Automobilindustrie Bauteilgeometrie Beton Blech Chrom CMT DIN Draht Edelstahl Eichung Elektrode EU EV Fertigung Fertigungsprozesse Formen Fronius Landmaschinen Landmaschinenindustrie Laser Lasersysteme Legierungen Licht Maschine Maschinen Maschinenindustrie Metall Metallverarbeitung Nickel PU Roboter Robotersysteme Schweißdraht Stahl Stromquelle TIG Werkstoffe
Mehr erfahren
05.01.2026

Industrial Spring 2026

From 24 through 27 March 2026, Targi Kielce will bring together companies from Poland and abroad for metalworking, automation and tooling technologies.

Additive Manufacuring AI AM Automation Coating Cutting Event Laser Metalworking Robotics Sheet Metal Surfacing Technologies Tools Trade Fair Welding
Read more
05.01.2026

Oerlikon: Closing des Verkaufs von Barmag

Oerlikon hat alle behördlichen Genehmigungen für die Veräusserung seines Geschäftsbereichs Barmag an Rieter erhalten. Der Abschluss der Transaktion ist für Anfang Februar...

AC AI AM AR CEO Energie Entwicklung EU Finanz FTS Geschäft Halbleiter IT K Luft- und Raumfahrt MAG MIG PU Raumfahrt TIG TSB UV Verkauf Werkstoff Werkzeug
Mehr erfahren
Fig. 2. Influence of the shielding gas circulation speed on the process temperature.
17.12.2025

High-Resolution Temperature Field-Based Process Control for Laser Powder Bed Fusion

This research paper was previously published in the German specialist magazin SCHWEISSEN UND SCHNEIDEN.

Additive Manufacturing AM Laser Powder Bed Fusion LPBF PBF-LB/M Welding
Read more