Technologien
Dr. Dirk Dittrich vom Fraunhofer IWS hat mit einem Team aus Forschung und Industrie ein leistungsfähiges Laserschweißverfahren entwickelt. Anhand eines lasergeschweißten Hallenkransegments zeigte das Team, dass das Verfahren im Stahlbau in erheblichem Maß Ressourcen einsparen kann. - © René Jungnickel/Fraunhofer IWS
06.04.2022

Laserstrahlschweißen soll Stahlbau revolutionieren

Laserstrahlschweißen soll Stahlbau revolutionieren

Energie- und Ressourceneffizienz werden zunehmend wichtiger. Für den konventionellen Stahlbau hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS daher gemeinsam mit Partnern eine Alternative entwickelt, die nicht nur eine Prozesstechnik-Lösung darstellt, sondern auch die Grundlage für Hardware- und Lasersicherheit bildet. Neben einer schonenderen Bearbeitung hochfester Werkstoffe werden deutlich verringerte Energieaufwendungen und Kosten bei gleichzeitig stark erhöhter Prozessgeschwindigkeit möglich. Verglichen mit konventionellen Fügeverfahren lässt sich der Energieeintrag ins Bauteil um bis zu 80 Prozent reduzieren. Das anschließende Richten des Bauteils entfällt sogar ganz.

In vielen technischen Bauwerken steckt ein Anwendungsbeispiel für den Stahlbau. Egal ob Containerschiffe, Schienenfahrzeuge, Brücken oder Windkrafttürme, in allen diesen Konstruktionen können mehrere 100 Meter Schweißnaht vorhanden sein. Üblicherweise kommen dafür konventionelle industrielle Verfahren wie das Metall-Aktivgasschweißen oder das Unterpulverschweißen zum Einsatz. Das Problem dabei: Durch die geringe Intensität des Lichtbogens fließt ein Großteil der aufgewendeten Energie nicht in den gewünschten Schweißprozess, sondern geht in Form von Wärme in das Bauteil verloren. Der Energiebedarf für die Nachbehandlung der Schweißnaht liegt vielfach in ähnlichen Größenordnungen wie derjenige für den eigentlichen Schweißprozess. „Diese energieintensiven Verfahren rufen eine erhebliche thermische Schädigung des Werkstoffs hervor und führen zu starken Verzugserscheinungen der Konstruktion – somit zu hohen Kosten durch nachträgliche Richtarbeit“, betont Dr. Dirk Dittrich, der am Fraunhofer IWS die Gruppe Laserstrahlschweißen leitet.

Leistungsfähiges Laserstrahlschweißverfahren

Ein Forscherteam um Dittrich hat im Projekt „VE-MES – Energieeffizientes und verzugsarmes Laser-Mehrlagen-Engspalt-Schweißen“ gemeinsam mit Industriepartnern eine energieeffiziente Alternative entwickelt. Das Laser-Mehrlagen-Engspalt-Schweißen (Laser-MES) bringt einen marktüblichen Hochleistungslaser zum Einsatz und besticht im Vergleich zu herkömmlichen Methoden durch verringerte Lagenanzahl und drastisch reduziertes Nahtvolumen. Daraus ergeben sich die entscheidenden Vorteile dieses Schweißverfahrens. „Wir können den Energieeintrag in das Bauteil beim Schweißen – je nach Komponente – um bis zu 80 Prozent und den Zusatzwerkstoffverbrauch um bis zu 85 Prozent im Vergleich zu herkömmlichen Lichtbogenverfahren senken“, unterstreicht Dirk Dittrich. „Zudem war am betrachteten Bauteil kein Richtprozess mehr erforderlich. Dadurch reduzieren wir Fertigungszeit und -kosten, können auch hochfeste Stahlwerkstoffe verarbeiten und verbessern die CO2-Bilanz der gesamten Fertigungskette deutlich. Das könnte bei der Vielzahl von Stahlbaukonstruktionen, die in Deutschland und in der Welt erstellt werden, einen erheblichen Vorteil darstellen.“ Denn die hohe Intensität des Laserstrahls garantiert einen sehr lokalen Energieeintrag an der Schweißstelle, wohingegen die umliegenden Bauteilbereiche vergleichsweise kalt bleiben.

Der Laserstrahl wird in die Fuge zwischen den beiden zu verschweißenden Blechkanten positioniert, und gleichzeitig wird davor ein Schweißzusatzwerkstoff hinzugefügt. Es entsteht eine qualitativ hochwertige Schweißnaht. - © Fraunhofer IWS
Der Laserstrahl wird in die Fuge zwischen den beiden zu verschweißenden Blechkanten positioniert, und gleichzeitig wird davor ein Schweißzusatzwerkstoff hinzugefügt. Es entsteht eine qualitativ hochwertige Schweißnaht. © Fraunhofer IWS

„Die Schweißzeit reduziert sich zudem um 50 bis 70 Prozent“, nennt Dittrich einen weiteren Vorteil. Bei der Qualität der Schweißnähte punktet das neue Verfahren ebenfalls – die Nähte sind deutlich schlanker und nahezu flankenparallel, während sie bei konventionellen Schweißprozessen V-förmig ausgeführt sind. „Den Laser in den Stahlbau einzuführen, würde für die mittelständische Industrie in Deutschland ein Alleinstellungsmerkmal darstellen und ihre Marktposition im internationalen Wettbewerb stärken“, ist sich Dittrich sicher. „Wir stellen eine effiziente Fügetechnologie für die Industrie bereit, die aufgrund ihres wirtschaftlichen Einsatzes und eines ressourcenschonenden Fertigungsablaufs den Stahlbau revolutionieren soll.“

Forschung in der Praxis: Stahlträger für den Hallenkranbau

Die Forschenden des Fraunhofer IWS demonstrierten die Leistungsfähigkeit ihrer Ent-wicklung anhand eines Praxisbeispiels aus dem Hallenkranbau. Sie brachten die neue Schweißtechnologie mit einer speziellen Systemtechnik und einem integrierten Strahlschutzkonzept zum Einsatz. Die Konstruktion des experimentell aufgebauten, vier Meter langen Rechteckprofils eines Hallenkran-Segments entsprach den Design- und Fertigungsrichtlinien vergleichbarer, konventionell hergestellter Bauteile. Erzeugt wurden anwendungstypische Schweißnähte: Ein Stumpfstoß an 30-Millimeter-Blechen und ein vollangeschlossener T-Stoß (15-Millimeter-Blech).

Die Querschliffe einer per Laser-MES erzeugten Stumpfstoßverbindung und einer T-Stoßverbindung zeigen die Nahtqualitäten, die sich mit deutlich reduziertem Kosten- und Ressourceneinsatz herstellen lassen. - © Fraunhofer IWS
Die Querschliffe einer per Laser-MES erzeugten Stumpfstoßverbindung und einer T-Stoßverbindung zeigen die Nahtqualitäten, die sich mit deutlich reduziertem Kosten- und Ressourceneinsatz herstellen lassen. © Fraunhofer IWS

Für einen Meter Schweißnaht ließen sich die Kosten für eine Blechdicke von 30 Millimetern gegenüber dem Unterpulverschweißen inklusive des nachträglichen Richtprozesses um 50 Prozent senken. Für Blechdicken unter 20 Millimetern, bei der herkömmlicherweise auch Metall-Aktivgasschweißverfahren eingesetzt werden, liegt die potenzielle Kostenersparnis mit bis zu 80 Prozent noch höher. Allein die Kostenersparnisse bezüglich der Schweißzusatzwerkstoffe kann in größeren Unternehmen bei mehr als 100.000 Euro pro Jahr liegen. Zusätzlich bieten die eingesetzten Laserstrahlquellen aufgrund ihres hohen Wirkungsgrades (ungefähr 50 Prozent) und der guten Prozesseffizienz (Reduktion des Energieeintrages um 80 Prozent) großes Potenzial, die steigenden Energiekosten einzudämmen. Mit diesem Nachweis der Praxistauglichkeit lässt sich der Lösungsansatz nun auch auf andere Anwendungen übertragen.

Über das Prinzip des Laser-Mehrlagen-Engspalt-Schweißens

Der Laser wird in die Fuge zwischen den beiden zu verschweißenden Blechkanten positioniert, während ein Schweißzusatzwerkstoff hinzugefügt wird. Die Energie des Laserstrahls schmilzt die Flanke der Werkstücke auf, ebenso wie den Zusatz-werkstoff aus dem Draht, der das Volumen zwischen den beiden Stücken auffüllt und eine qualitativ hochwertige Schweißnaht erzeugt. Das Verfahren ermöglicht das Schweißen typischer Stoßkonfigurationen im Stahlbau. Die Blechkanten sind plasmageschnitten, und die Fügestelle weist zum Teil Spalte von bis zu zwei Millimetern Breite auf, die der Laserschweißprozess sicher überbrückt. Sowohl beim Schweißen eines Stegblechs (T-Stoß) als auch beim Schweißen des Stumpfstoßes gewährleistet das Verfahren einen Vollanschluss – eine Verbindung der beiden Teilstücke über die gesamte Kontaktfläche. Beim konventionellen Stahlbau wird dies verfahrensbedingt nicht immer zu 100 Prozent erreicht, insbesondere beim T-Stoß bestehen technologische Grenzen.

(Quelle: Presseinformation des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS)

Schlagworte

BrückenbauEnergieeffizienzEngspaltschweißenFügetechnikLaserstrahlschweißenMAG SchweißenMetall-AktivgasschweißenRessourceneffizienzSchienenfahrzeugbauSchweißtechnikStahlbauUnterpulverschweißen

Verwandte Artikel

Teamsprechende: (v.l.n.r. Ulrich Berners, Dr. Alexander Olowinsky, Dr. Peter Leibinger, Dr. Markus Kogel-Hollacher, Dr. Jan-Philipp Weberpals, Edwin Büchter, Gwenn Pallier, Prof. Constantin Häfner, Kristina zur Mühlen).
25.04.2024

Innovationen aus der Lasertechnik für die Industrie

Verleihung des Innovation Award Laser Technology 2024 in Aachen: Preistragender des mit 10.000 Euro dotierten Innovation Award Laser Technology 2024 ist Herr Edwin Büchte...

Automobilindustrie Batterieproduktion Laserbearbeitung Laserstrahl-Remote-Schweißverfahren Laserstrahlschweißen Lasertechnik Lasertechnologien Metallschrott Oberflächenreinigung Strahlformung
Mehr erfahren
Hauptsitz von Blackbird in Garching-Hochbrück (Großraum München).
19.04.2024

Laserschweißexperte stärkt Vertriebspower

Die Blackbird Robotersysteme GmbH schafft einen neuen Bereich zur Geschäftsfeldentwicklung. Benjamin Bopp die Leitung des Vertriebs übernommem, der bisherige Vertriebslei...

Automobilindustrie Elektromobilität Laserschweißen Laserstrahlschweißen Lasertechnologien Remote-Laserschweißen Remote-Laserstrahlschweißen Vertrieb
Mehr erfahren
19.04.2024

Mit neuen Schweißlösungen in Richtung Industrie 5.0

Viñolas Metall hat für die Serienfertigung eine CMT-Roboterschweißzelle in Kombination mit einer TPS-400i-Schweißstromquelle eingeführt. Gleichzeitig setzt man auf Multip...

Anlagenbau Blechbearbeitung Eisenbahnbau Kesselbau Kraftwerksbau MAG Schweißen Maschinenbau Metallbauteile Metallkomponenten Metallkonstruktionen MIG Schweißen Roboterschweißen Schweißtechnik Werkzeugbau WIG Schweißen
Mehr erfahren
Dipl.-Ing. Jens Jerzembeck, Geschäftsführer der Forschungsvereinigung Schweißen und verwandte Verfahren e. V. des DVS, eröffnet den INNOVATIONSTAG 2024.
DVS Group
19.04.2024

INNOVATIONSTAG 2024: Energiewende in der Fügetechnik

Die DVS Forschung und die FOSTA – Forschungsvereinigung Stahlanwendung e. V. haben am 10. und 11. April den Innovationstag 2024 veranstaltet. Rund 80 Teilnehmer erhielten...

Energiewende Forschung Fügetechnik
Mehr erfahren
Mithilfe von Elektromagneten will eine Ausgründung der BAM die Schweißzeit von Windtürmen von 96 auf 12 Stunden reduzieren.
17.04.2024

Neues Schweißverfahren für Windräder ermöglicht beschleunigte Produktion

Die Bundesanstalt für Materialforschung und -prüfung stellt auf der diesjährigen Hannover Messe ein innovatives Schweißverfahren für Windräder vor, mit dem sich die Produ...

Elektromagnete Schweißtechnik Schweißverfahren Windenergie Windräder Windtürme
Mehr erfahren