Forschung
Der Revolver des Manipulators beim Hochvakuum-Laserschweißen - © KTW Systems GmbH
03.05.2019

Weltpremiere: Laserschweißen im Hochvakuum

Weltpremiere: Laserschweißen im Hochvakuum

Für besonders sensitive Anwendungen muss der Schweißprozess im Hochvakuum stattfinden, um das Einlagern von Fremdpartikeln und von reaktiven Gasen zu vermeiden, wie sie auch beim Einsatz von Schutzgasen nicht ausgeschlossen werden können. In solchen Fällen ist das Elektronenschweißen in der Regel das Verfahren der Wahl – allerdings ist es sehr aufwändig und kostspielig im Einsatz.  Mit dem Vakuum-Laser-System des Start-Up-Unternehmens KTW Systems GmbH aus Wehr können diese Nähte zukünftig auch mit dem Laser verschweißt werden. Unabhängig vom Lasertyp, zu deutlich reduzierten Kosten und mit gleichwertigen Schweißergebnissen.

Entkopplung von Laser und Vakuum
Kernidee dieses patentierten Laserschweißsystems ist die Entkopplung von Vakuumkammer und Laserstrahlquelle. Die zu verschweißenden Bauteile werden in der Vakuumkammer positioniert und der Raum anschließend  bis auf 5*10-5 mbar abgepumpt – das entspricht einem Hochvakuum. Abhängig vom Pumpensystem und der Kammergröße dauert der Vorgang des Abpumpens etwa 5 bis 10 Minuten.

Der Laserstrahl wird durch eine Quarz- oder Saphirglasscheibe auf den Schweißpunkt fokussiert. Die Laserstrahlquelle ist frei wählbar. Für die maximal sechs Laserköpfe kann zudem eine individuelle Anzahl an Öffnungen angebracht werden, durch die der Laserstrahl in die Vakuumkammer eindringen kann. Hinzu kommen eine frei wählbare Anzahl an Öffnungen zum Beobachten des Schweißprozesses mit Kameras oder mit bloßem Auge. Die Streustrahlung wird die Kammer und die Schutzgläser absorbiert.

Die Vakuumkammer
Herzstück der Vakuumkammer sind die 6-Achsen-Technologie und die Spannvorrichtung, die ein oder mehrere Bauteile aufnehmen. Die Spanntechnik ist so ausgelegt, dass sie keine Hohlkammern hat, in denen sich Lufteinschlüsse befinden könnte. Die Hohlkammern sind rein mechanisch, um keine weiteren Zuführungen nach außen zu haben, die abgedichtet werden müssten. Die 6-Achsen-Technologie erlaubt es, sämtliche Geometrien zu schweißen und regelt gleichzeitig die Relativbewegung.

In der Größe ist die Vakuumkammer skalierbar ‒ im Durchmesser bis 1.500 mm und in der Länge bis 2.000 mm. Sie kann daher den jeweiligen Applikationen angepasst werden. Auf diese Weise ist die Vakuumkammer jeweils so klein wie möglich und zugleich so groß wie nötig. Eine Optimierung des Volumens der Vakuumkammer reduziert die Pumpzeit und erhöht die Produktivität.

 

Die Einsatzgebiete
Das Laser-Hochvakuumschweißen deckt die gleichen Einsatzgebiete wie das Elektronenstrahlschweißen ab – und geht darüber hinaus. Die Materialdicken betragen dabei bis zu 20 mm – unabhängig vom zu verschweißenden Material und den Materialpaarungen.

Typische Anwendungen finden sich im Bereich Automotiv, Medizintechnik, Luft- und Raumfahrt, Verteidigung, Elektronikindustrie, Petrochemie, Kraftwerksbau, Windenergie, Eisenbahnbau etc.

Schlagworte

ElektronenstrahlschweißenLaserschweißenLaserstrahlschweißenVakuum

Verwandte Artikel

Auf dem Weg zur Supraschmierung spielen extrem harte „Diamor“-Schichten auf Kohlenstoff-Basis eine Schlüsselrolle. Das Fraunhofer IWS will diese zusätzlich mit Fremdatomen wie etwa Bor versetzen, sodass sie sich mit bestimmten Schmierstoffmolekülen verbinden und im laufenden Betrieb ultraschmierende Grenzflächen erzeugen. Das soll die Reibung im Motor im Vergleich zu heute etwa halbieren.
14.10.2021

Supraschmierung verbannt Reibung aus Motoren

Damit Elektrofahrräder künftig mit einer Akkuladung weiter kommen als bisher und Industriemaschinen nicht mehr so viel Strom in Form von Reibung und Abwärme vergeuden, ar...

AM Bauteile Beschichtungen Energie Gas Industriemaschinen KI Kohlenstoff Laser Lichtbogen Maschinen Maschinenbau Plasma Reibung Schmiermittel Schmierstoffe Strahltechnik Tribologie Vakuum Werkzeugmaschinen
Mehr erfahren
13.10.2021

VINCI Energies übernimmt den Robotik- und Schweißspezialisten conntronic

VINCI Energies vergrößert ihr Portfolio in der Robotik-gestützten Füge- und Schweißtechnik durch die Übernahme der conntronic Prozess- und Automatisierungstechnik.

Automation Automatisierungstechnik Fügetechnik Kondensatorentladungs-Schweißen Laserstrahlschweißen Mittelfrequenzschweißen Prozesstechnik Robotik Schweißtechnik
Mehr erfahren
Um die geeigneten Filtersubstanzen zu finden, nutzen die Forschenden des Fraunhofer IWS eine Multi-Adsorptionsanlage, womit das Adsorptionsverhalten gleichzeitig konkurrierender Gase untersucht wird.
06.10.2021

Allzeit saubere Luft: Filterlösungen für Hochtechnologieprozesse

Durch die Metallbearbeitung mit Laser und Plasma gelangen viele verschiedene Schadstoffe in die Umgebungsluft. Das Fraunhofer-Institut für Werkstoff- und Strahltechnik IW...

3D-Druck Arbeitsschutz Filteranlagen Filtration Gesundheitsschutz Laserschweißen Lasertechnologien Metallbearbeitung Plasmatechnologien
Mehr erfahren
Digitales Monitoring Spot-in-Spot-Applikation .
23.09.2021

Digitalisierte Multi-Spot-Lösungen  für Laserstrahlschweißen und -löten

Laserline stellt eine neue Entwicklungsstufe seiner Digital Laser Solutions für Industrie 4.0-Prozessarchitekturen vor.

Digitalisierung Fügetechnik Industrie 4.0 Laserstrahllöten Laserstrahlschweißen Löten Schweißen
Mehr erfahren
Bauteile wie diese Getränkebehälter lassen sich mit dem Laser im Radial-schweißsystem LPKF InlineWeld 2000 sicher schweißen.
07.09.2021

Radialschweißen mit System

Das Fügen von Kunststoffteilen mit rotationssymmetrischen bzw. zylindrischen Geometrien birgt einige Herausforderungen, die LPKF mit einem spezialisierten Lasersystem mei...

Fügetechnik Kunststoffe Laserstrahlschweißen Lasertechnologien Radialschweißen
Mehr erfahren