Forschung
© TU Dresden
06.06.2020

Selbstreinigende Aluminium-Oberflächen

Im „CAMP“ arbeiten TU Dresden und Fraunhofer IWS an der Übertragung großflächiger filigraner Strukturen auf Oberflächen

Das Verfahren wurde in enger Zusammenarbeit mit dem Fraunhofer IWS entwickelt. Gemeinsam mit dem Dresdner Institut betreibt die Professur für laserbasierte Methoden der großflächigen Oberflächenstrukturierung an der TU Dresden mit das Zentrum „CAMP –Center for Advanced Micro Photonics“.

Professor Lasagni: „Wir arbeiten aktuell an mehreren spannenden Projekten, mit dem Ziel großflächig filigrane Strukturen auf Metallen, Keramiken oder Polymeren in kürzester Zeit zu erzeugen“. Darin entwickeln die Wissenschaftler kontinuierlich eine Technologie namens „Direct Laser Interference Patterning“ weiter, die außergewöhnliche Eigenschaften im Vergleich zu klassischen laserbasierten Verfahren bietet.

Beispiele für solche Entwicklungen finden sich in den von der Europäischen Union geförderten Projekten „LAMPAS“ und „SHARK“, in denen Laserquellen und intelligente Strukturierungsverfahren die Funktionalisierung von Oberflächen aufverschiedenen Anwendungsgebieten, wie z. B. der Automobil-, Lebensmittel-und Haushaltsgeräteindustrie, lukrativ machen sollen.

Hintergrund

Die Arbeit „Herstellung von großflächigen, zwei-und dreistufigen multi-skaligen Strukturen mit multifunktionalen Oberflächeneigenschaften mittels Laserbasierten Methoden“ wurde von der Deutschen Forschungsgemeinschaft im Rahmen eines Reinhart Koselleck-Projektes gefördert. Geleitet wird das Projekt von Professor Andrés Lasagni, Inhaber der Professur für Laserbasierte Methoden der großflächigen Oberflächenstrukturierung (LMO). Der vollständige Artikel kann in der Zeitschrift Applied Surface Science nachgelesen werden. Dr. Marcos Soldera unterstützte die Forschung. Er folgte dem Ruf der Alexander von Humboldt-Stiftung aus Argentinien nach Deutschland, um angewandte Forschung zu betreiben.

Ein Projektteam der TU Dresden und des Fraunhofer IWS strukturierte eine Aluminiumplatte so, dass Wassertropfen darauf nicht mehr haften und Schmutzpartikel von der Oberfläche entfernt werden können (Dr. Marcos Soldera, Thomas Kuntze, Stephan Milles und Professor Andrés Fabián Lasagni, v. l.). - © TU Dresden
Ein Projektteam der TU Dresden und des Fraunhofer IWS strukturierte eine Aluminiumplatte so, dass Wassertropfen darauf nicht mehr haften und Schmutzpartikel von der Oberfläche entfernt werden können (Dr. Marcos Soldera, Thomas Kuntze, Stephan Milles und Professor Andrés Fabián Lasagni, v. l.). © TU Dresden

Eine kurze Filmsequenz des Selbstreinigungsprinzips finden Sie hier.

(Quelle: Presseinformation des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS)

Schlagworte

Additive FertigungAluminiumAutomobilindustrieFertigungsverfahrenFlugzeugbauFunktionalisierte OberflächenLaserschneidenLaserschweißenLasertechnologie

Verwandte Artikel

Bauteil aus Wolfram, hergestellt im 3D-Druck mit dem Verfahren des Elektronenstrahlschmelzens.
14.04.2021

Elektronenstrahlschmelzen bringt sprödes Metall in Form

Forschenden des KIT ist es erstmals gelungen, Bauteile aus Wolfram für den Einsatz im Hochtemperaturbereich im 3D-Druck-Verfahren Elektronenstrahlschmelzen herzustellen.

3D-Druck Additive Fertigung Elektronenstrahlschmelzen Metalle Wolfram
Mehr erfahren
12.04.2021

3D-Druck kann Lieferengpässe überbrücken

Ob als Folge der Corona-Pandemie oder der Havarie im Suez-Kanal: Derzeit werden in globalem Maßstab Liefer-ketten unterbrochen. Ein wirksames Mittel dagegen kann der 3D-D...

3D-Druck Additive Fertigung Digitalisierung Industrie
Mehr erfahren
06.04.2021

Neues Merkblatt DVS 1401 zum Kleben additiv gefertigter Bauteile

Mit Ausgadatum April 2021 hat der DVS das neue Merkblatt 1401 „Gestaltungsempfehlungen zum Kleben additiv gefertigter Bauteile“ veröffentlicht.

Additive Fertigung Klebtechnik Pulverbettverfahren
Mehr erfahren
Professor Dr. Ghazal Moeini, deren Forschungsgebiet an der Westfälischen Hochschule in Gelsenkirchen sowohl die additive Fertigung metallischer Werkstoffe als auch die Metallurgie des Schweißens ist, erhält Fördermittel des Landes Nordrhein-Westfalen für ein neuartiges Härteprüfgerät für die Charakterisierung der mechanischen Eigenschaften additiv mit dem 3-D-Drucker gefertigter Proben. Das wird für vielfältige Anwendungen in der Automobil-, Luft- und Raumfahrtindustrie sowie im Maschinenbau gebraucht.
04.04.2021

Förderung für die Forschung zur Additiven Fertigung

Professor Dr. Ghazal Moeini vom Institut für Maschinenbau erhält rund 55.000 Euro für die Anschaffung einer Härteprüfmaschine zur Charakterisierung von drahtgestützt addi...

Additive Fertigung Schweißen Schweißtechnik Werkstoffe
Mehr erfahren
28.03.2021

Pulverbettverfahren: Staubarme Arbeitsweise beim 3D-Druck sicherstellen

Im Rahmen eines Forschungsprojektes untersuchte die Bundesanstalt für Arbeitsschutz und Arbeitsmedizin die Belastung der Beschäftigten am Arbeitsplatz beim 3D-Druck mit P...

3D-Druck Additive Fertigung Arbeitsschutz Gesundheitsschutz Pulverbettverfahren
Mehr erfahren